Để giải phương trình $x^2 - 6y^2 = 1$ với $x, y$ là số nguyên tố, ta sử dụng phương pháp giải bằng phương pháp Pell như sau: Phương trình có dạng $x^2 - 6y^2 = 1$, tương đương với phương trình $x^2 - 6y^2 - 1 = 0$. Ta cần tìm nghiệm nguyên của phương trình này, có dạng $(x, y)$. Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 7, y_1 = 2$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên. $x_1 = 7, y_1 = 2$ $x_2 = 47, y_2 = 14$ $x_3 = 337, y_3 = 100$ $x_4 = 2387, y_4 = 710$ $x_5 = 16807, y_5 = 3982$ Vậy $(x, y) = (16807, 3982)$ là một nghiệm của phương trình $x^2 - 6y^2 = 1$, với $x$ và $y$ đều là số nguyên tố.