tim x biet \(3\sqrt{x^3+8}=2x^2-6x+4\)
Tim x,
a,2x^4-6x^3+x^2+6x-3=0
b,x^3-9x^2+26x+24=0
c, P= 2x^4 - 4x^3 + 6x^2 - 4x + 5 biet rang x^2 - x=7
a)\(2x^4-6x^3+x^2+6x-3=0\)
\(\Leftrightarrow2x^4-6x^3+3x^2-2x^2+6x-3=0\)
\(\Leftrightarrow x^2\left(2x^2-6x+3\right)-\left(2x^2-6x+3\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(2x^2-6x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x^2-6x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+1=0\\2x^2-6x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\\Delta_{2x^2-6x+3}=\left(-6\right)^2-4\left(2.3\right)=12\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\x_{1,2}=\frac{6\pm\sqrt{12}}{4}\end{array}\right.\)
b)\(x^3+9x^2+26x+24=0\)
\(\Leftrightarrow x^3+5x^2+6x+4x^2+20x+24=0\)
\(\Leftrightarrow x\left(x^2+5x+6\right)+4\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(x^2+5x+6\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\\x=-4\end{array}\right.\)
tim x biet (6x)^3:8=(2x-1)^3
Lời giải:
$(6x)^3:8=(2x-1)^3$
$\Rightarrow (\frac{6x}{2})^3=(2x-1)^3$
$\Rightarrow (3x)^3=(2x-1)^3$
$\Rightarrow 3x=2x-1$
$\Rightarrow x=-1$
tim x biet : (2x+3)^2x - 2*(2x+3)*(2x-5)+(2x-5)^2=x^2+6x+64
\(\Leftrightarrow\left(2x+3-2x+5\right)^2=x^2+6x+64\)
=>x^2+6x=0
=>x(x+6)=0
=>x=0 hoặc x=-6
choP(x) =ax^ 4-6x^ 3 +7 -2x^ 2-4x^ 4 tim a biet p(x) co bac la 3
tim x biet (3-căn 2x)*(2-3 căn 2x)=6x-5
\(\left(3-\sqrt{2x}\right)\left(2-3\sqrt{2x}\right)=6x-5\)ĐK : x>= 0
\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)
\(\Leftrightarrow-11\sqrt{2x}+6x+6=6x-5\Leftrightarrow-11\sqrt{2x}=-11\)
\(\Leftrightarrow\sqrt{2x}=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
\(x^2-x+8-4\sqrt{x^2-x+4}=0\)
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
tim x biet
a) 9x^2+6x+1=0
b) 25x^2=4
c) 8-125x^3=0
d) (2x+1)-10(2x+1)(x+2)+25(x+2)^2=0
GIÚP MIK VS NHÉ
a) = (3x +1)2 =0
3x+1 =0
x = -1/3
b) = (5x)2 -22 =0
(5x+2)(5x-2) = 0
5x+2 =0
x = -2/5
5x -2 =0
x= 2/5
xem đi rui lam tip
a) 9x2 + 6x + 1 = 0 => (3x)2 + 2 x 3x + 1 = 0 => (3x + 1)2 = 0 => 3x + 1 = 0 => x = \(\frac{-1}{3}\)
b) 25x2 = 4 => x2 = 4 : 25 => x2 = 0,16 => x = 0,4 hoặc x = -0,4
c) 8 - 125x3 = 0 => 125x3 = 8 => x3 = 8 : 125 => x3 = \(\frac{8}{125}\)=> x = \(\frac{2}{5}\)
c) = 23 - (5x)3 =0
(2-5x)(4 +10x +25x2) =0
2-5x=0
x = 2/5
4 + 10x +25x2 = 0 (máy tính giải dc)
d) = (( 2x+1) - 5(x+2))2 =0
2x+1 -5x -10=0
3x= -9
x = -3
(hoàn toàn ad hđt đáng nhớ thui,bn à)
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Giải các phương trình sau:
a) \(\sqrt{x^2-6x+9}=4-x\)
b) \(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)
Lời giải:
a.
PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)
b.
ĐKXĐ: $x\geq \frac{3}{2}$
PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)
\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)
\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)
\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
a: Ta có: \(\sqrt{x^2-6x+9}=4-x\)
\(\Leftrightarrow\left|x-3\right|=4-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-x\left(x\ge3\right)\\x-3=x-4\left(x< 3\right)\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=7\)
hay \(x=\dfrac{7}{2}\left(nhận\right)\)