Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Nguyễn Thanh Hải
Xem chi tiết
Hoàng đức
Xem chi tiết
công trần hữu
Xem chi tiết
Đặng Đức Lương
14 tháng 3 2021 lúc 20:42

Xét tam giác MNI và MPI có

       MI là cạnh chung

       MN = MP( tam giác MNP cân)

       Góc MIN = góc MIP = 90°

=> Tam giác MIN = tam giác MIP( cgv - ch)

IN = IP = 5 cm nên I là trung điểm của NP

b) Tam giác MIN vuông tại I có

NI2 + MI2 = MN2(  định lí Pytago)

MI2 + 52 = 142

MI2 + 25 = 196

MI2 = 144

MI=12

c) Xét tam giác PHI và PKI có

         MI là cạnh chung

         Góc HMI = KMI ( tam giác NMI = PMI )

          Góc IHM = IKM = 90° 

=》 Tam giác HMI = KMI ( ch - gn)

=》IH=IK

phan thanh bình
2 tháng 4 2021 lúc 20:34

lolangngaingungngoamnhonhungoho

Khoa 20-Đăng
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 9 2021 lúc 8:20

\(a,\left\{{}\begin{matrix}MI=IN\\MK=KP\end{matrix}\right.\Rightarrow IK\) là đường trung bình tam giác MNP

\(b,\left\{{}\begin{matrix}MK=KP\\HK//MN\end{matrix}\right.\Rightarrow NH=HP\) hay \(H\) là trung điểm NP

\(c,\left\{{}\begin{matrix}MI=IN\\NH=HP\end{matrix}\right.\Rightarrow IH\) là đường trung bình tam giác MNP

\(\Rightarrow IH=\dfrac{1}{2}MP=10\left(cm\right)\)

Lê Ngọc Băng Ngân
Xem chi tiết
Kiều Vũ Linh
9 tháng 5 2023 lúc 8:59

loading...  

a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:

IN chung

MNI = KNI (do NI là phân giác của ∠MNP)

⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)

b) ∆IKP vuông tại K

IP là cạnh huyền nên IP lớn nhất

IK < IP (1)

Do ∆IMN = ∆IKN (cmt)

⇒ MI = IK (2)

Từ (1) và (2)⇒ MI < IP

c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:

IM = IK (cmt)

∠PIK = ∠MIQ (đối đỉnh)

∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)

⇒ KP = MQ (hai cạnh tương ứng)  (3)

Do ∆IMN = ∆IKN (cmt)

⇒ MN = KN (hai cạnh tương ứng)   (4)

Từ (3) và (4) ⇒ KN + KP = MN + MQ

NP = NQ

⇒ ∆NPQ cân tại N

Lại có NI là phân giác của ∠MNP

⇒ NI là phân giác của ∠QNP

⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)

⇒ ND ⊥ QP

Lê Ngọc Băng Ngân
9 tháng 5 2023 lúc 7:52

Giúp vs ạ mình đang cần gấp

Trần Lan Anh
Xem chi tiết
Trần Lan Anh
29 tháng 2 2016 lúc 21:21

giúp vs mình cần gấp :(((

Trần Tú Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2022 lúc 21:40

a: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có

CA=CB

CI chung

Do đó: ΔCIA=ΔCIB

Suy ra: IA=IB

b: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có

CI chung

\(\widehat{HCI}=\widehat{KCI}\)

Do đó: ΔCHI=ΔCKI

Suy ra: IH=IK

c: IA=IB=AB/2=6(cm)

nen IC=8(cm)

d: Xét ΔCAB có CH/CA=CK/CB

nên HK//AB

Công Chúa Mắt Tím
Xem chi tiết
Nhật Hạ
3 tháng 1 2020 lúc 17:04

P N M H K I Q

GT

 △MNP cân tại P.   MN = 6cm,   NPI = MPI = NPM/2 ,  (I \in  MN)

 IK ⊥ PM ,  IH ⊥ PN . IQ = IM 

KL

 a, △MPI = △NPI

 b, HIP = PIK

 c, △MIQ vuông cân. MQ = ?

 d, Nếu PKH đều, điều kiện △MNP

Bài làm:

a,  Vì △MNP cân tại P => PN = PM

Xét △NPI và △MPI

Có: NP = MP (gt)

      NPI = MPI (gt)

    PI là cạnh chung

=> △NPI = △MPI (c.g.c)

b, Xét △HPI vuông tại H và △KPI vuông tại K

Có: PI là cạnh chung

   HPI = KPI (gt)

=> △HPI = △KPI (ch-gn)

=> HIP = PIK (2 góc tương ứng)

Mà IP nằm giữa IH, IK

=> IP là phân giác KIH

c, Ta có: PIN = MIQ (2 góc đối đỉnh)

Mà PIN = 90o (gt)

=> MIQ = 90o    (1) 

Xét △MIQ có: IQ = IM => △MIQ cân tại I   (2)

Từ (1), (2) => △MIQ vuông cân tại I

Vì △NPI = △MPI (cmt) 

=> IN = IM (2 cạnh tương ứng)

Mà MN = IN + IM = 6 (cm)

=> IN = IM = 6 : 2 = 3 (cm)

Mà IM = IQ 

=> IM = IQ = 3 (cm)

Xét △MIQ vuông tại I có: IQ2 + IM2 = MQ2 (định lý Pitago)

=> 32 + 32 = MQ2

=> 9 + 9 = MQ2

=> 18 = MQ2

=> MQ = \(\sqrt{18}=3\sqrt{2}\)

d, Để △PHK đều <=> HPK = PKH = KHP = 60o

=> △MNP có NPM = 60o mà △MNP cân

=> △MNP đều

Vậy để △PKH đều <=> △MNP đều

Khách vãng lai đã xóa
Nguyen Thi Minh Tam
Xem chi tiết