| x+4|+|y+1|=2
tìm x
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a) Tìm x,y biết x/5 =y/3 và x^2+ y^2 =4
b) Tìm x biết x-2/x-1 = x+4/x+1
cảm ơn mọi người nhìu nha!!!
1. Tìm x
|x+1|+|x+2|+|x+3|+|x+4|=5.x
2. Tìm GTNN của
A=|x+2000|+|x-2018|
3. Tìm x,y,z biết
a) |x+1|+|2.y-4|=0
b) |x-y+1|+(y-3)^2=0
c) |x+y|+|x-z|+|2.x-1|=0
B1: Đk: 5x ≥ 0 => x ≥ 0
Vì |x + 1| ≥ 0 => |x + 1| = x + 1
|x + 2| ≥ 0 => |x + 2| = x + 2
|x + 3| ≥ 0 => |x + 3| = x + 3
|x + 4| ≥ 0 => |x + 4| = x + 4
=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x
=> x + 1 + x + 2 + x + 3 + x + 4 = 5x
=> 4x + 10 = 5x
=> x = 10
B2: Ta có: |x - 2018| = |2018 - x|
=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018
Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0
Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)
Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)
Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018
B3:
a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0
=> |x + 1| + |2y - 4| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy...
b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0
=> |x - y + 1| + (y - 3)2 ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy...
c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0 ; |2x - 1| ≥ 0
=> |x + y| + |x - z| + |2x - 1| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)
coi lại mới thấy trình bày ngờ-u :))
B1: Đk: 5x ≥ 0 => x ≥ 0
=> x + 1 > 0 => |x + 1| = x + 1
=> x + 2 > 0 => |x + 2| = x + 2
=> x + 3 > 0 => |x + 3| = x + 3
=> x + 4 > 0 => |x + 4| = x + 4
Ta có: |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x
=> .... Làm tiếp như dưới
tìm giá trị nhỏ nhất
B= (x^2+1) (y^2+1) - (x+4) (x-4) - ( y-5) (y+5)
A= (x-1) (x+2) (x+3) (x+6)
\(B=\left(x^2+1\right)\left(y^2+1\right)-\left(x-4\right)\left(x+4\right)-\left(y-5\right)\left(y+5\right)\\ B=x^2y^2+x^2+y^2+1-x^2+16-y^2+25\\ B=x^2y^2+41\ge41\)
Dấu "=" xảy ra khi \(x^2y^2\Leftrightarrow x=y=0\)
Vậy \(MaxB=41\Leftrightarrow x=y=0\)
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\\ A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\\ A=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi
\(\left(x^2+5x\right)^2=0\\ \Leftrightarrow x\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(MaxA=-36\Leftrightarrow x\in\left\{0;-5\right\}\)
x>0 y>0 x+y=4
tìm min E cho x>0 y>0 và x+y=4 tìm min E= (x+1/x)^2 +(y+1/y)^2 +2018
Bài 1 Tìm x
a, x-1/x+5=6/7(x khác 5)
b, x-2/x-1=x+4/x+7
Bài 2: Tìm x biết
x/y^2 và x/y=16
Bài 3: cho 3x=2y tính
x/y^2=y/2^x
Bài 4:tìm x
a,|x|+|x+2|=0
b,|x(x^2-5/4)|=x
c, (2x-5)^2000+(3y+4)^2000< hoặc = 0
Bài 1 :
\(\frac{x-1}{x-5}=\frac{6}{7}\Leftrightarrow7x-7=6x-30\)
\(\Leftrightarrow x=-23\)
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)ĐK : \(x\ne1;-7\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
Ta co: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
Ta có: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
Vẽ và tìm tọa độ giao điểm của:
1.y=x và y=2x-4 2.y=2x-1 và y=x+1
3.y=-2x-1 và y=x-4 4.y=-x+2 và y=x-1
5.y=-2x+3 và y=-x+1 6.y=-x+1 và y=x-3
7.y=2/3x + 1 và y=-1/2x-2 8.y=-x-2 và y=-2/3x-1
9.y=2x và y=x+2 10.y=-2x+5 và y=2x+1
11.y=-2x+3 và y=1/2x-2 12.y=-1/2x+1 và y=x-5
13.y=x-2 và y=1/3x 14.y=2/3x+1 và y=x
2: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-1=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
cho x,y dương thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}=2\)
tìm Max \(A=\dfrac{1}{x^4+y^2+2xy^2}+\dfrac{1}{y^4+x^2+2yx^2}\)
Ta có \(2=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Leftrightarrow xy\ge1\)
\(A=\dfrac{1}{x^4+y^2+2xy^2}+\dfrac{1}{x^2+y^4+2x^2y}\\ \le\dfrac{1}{4\sqrt[4]{x^6y^6}}+\dfrac{1}{4\sqrt[4]{x^6y^6}}=\dfrac{1}{4xy}+\dfrac{1}{4xy}\\ \le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow x=y=1\)
Tìm tập xác định của hàm số Y = x^2 +x+1/x^-x+1 Y=5x-7/(x^2 +x)^2-4(x^2 +x) +4