Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 9 2021 lúc 23:55

Từ đường tròn lượng giác, trên \(\left(-\dfrac{\pi}{2};3\pi\right)\):

- Nếu \(0< t< 1\) thì \(sinx=t\) có 4 nghiệm

- Nếu \(-1< t< 0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=1\) thì \(sinx=t\) có 2 nghiệm

- Nếu \(t=-1\) thì \(sinx=t\) có 1 nghiệm

Do đó pt đã cho có 5 nghiệm pb trong khoảng đã cho khi:

\(2t^2-\left(5m+1\right)t+2m^2+2m=0\) có 2 nghiệm pb thỏa mãn:

- TH1: \(\left\{{}\begin{matrix}t_1=-1\\0< t_2< 1\end{matrix}\right.\)

- TH2: \(\left\{{}\begin{matrix}-1< 0< t_1\\t_2=1\end{matrix}\right.\)

- TH3:  \(\left\{{}\begin{matrix}t_1=0\\t_2=1\end{matrix}\right.\)

Về cơ bản, chỉ cần thay 1 nghiệm bằng 0 hoặc 1 rồi kiểm tra nghiệm còn lại có thỏa hay ko là được

Kaori Ringo
Xem chi tiết
Ngọc Hà Đinh Thị
22 tháng 1 2018 lúc 20:50

Nếu m có dạng 3k thì m+3 chia hết cho 3, nếu m có dạng 3k-1 thì m-2 chia hết cho 3 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2018 lúc 12:47

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 6 2018 lúc 4:21

  f(x) là hàm đồng biến nên mỗi phương trình (1);(2);(3) đều chỉ có 1 nghiệm duy nhất và ba nghiệm của phương trình này khác nhau.

Từ đó phương trình g f x = 0  có ba nghiệm phân biệt.

Chọn: C

Trịnh Ngô Minh Thư
Xem chi tiết
Trọng Tuấn
Xem chi tiết
06.Hoàng Bảo
Xem chi tiết
Đỗ Tuệ Lâm
23 tháng 4 2022 lúc 22:03

\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)

\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)

\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 12 2017 lúc 11:32

Đáp án D

Tất nhiên đến đây mà vội vàng kết luận thì chưa hoàn thành, các em có thể dễ thấy trường hợp còn lại không có m thỏa mãn yêu cầu bài toán.

 

Trường hợp phương trình (*) có một nghiệm t 1 = 1    (có hai nghiệm x) và một nghiệm - 1 < t 2 ≤ 0    (có ba nghiệm x).

Rất dễ để tìm được  nhưng rõ ràng không có m theo yêu cầu.

Vậy ta kết luận  thỏa mãn yêu cầu bài toán và .

 

 

§ Bổ trợ kiến thức: Không dễ để các em có thể nhận ra cả 2 trường hợp này trong cùng một bài toán, cho nên khi gặp một số trường hợp đã giải ra kết quả mà có khả năng là đáp án đúng cao thì các em nên mạnh dạn bỏ hẳn trường hợp còn lại để tránh việc mất nhiều thời gian vào các trường hợp không đâu, ở đây phương án bên dưới cho rất nhẹ nên các em có thể dễ dàng kết luận luôn  

và chọn đáp án đúng.

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 2 2018 lúc 5:53

Chọn D

Tất nhiên đến đây mà vội vàng kết luận thì chưa hoàn thành, các em có thể dễ thấy trường hợp còn lại không có m thỏa mãn yêu cầu bài toán

 

Trường hợp phương trình(*) có một nghiệm t 1 = 1 (có hai nghiệm x) và một nghiệm - 1 < t 2 ≤ 0 (có ba nghiệm x).

Rất dễ để tìm được  nhưng rõ ràng không có m theo yêu cầu.

 

Vậy ta kết luận m = - 1 2  thỏa mãn yêu cầu bài toán và .

§ Bổ trợ kiến thức: Không dễ để các em có thể nhận ra cả 2 trường hợp này trong cùng một bài toán, cho nên khi gặp một số trường hợp đã giải ra kết quả mà có khả năng là đáp án đúng cao thì các em nên mạnh dạn bỏ hẳn trường hợp còn lại để tránh việc mất nhiều thời gian vào các trường hợp không đâu, ở đây phương án bên dưới cho rất nhẹ nên các em có thể dễ dàng kết luận luôn  và chọn đáp án đúng.