thực hiện phép tính
a)1/2x2.2x3-4x2+3
b)2y(xy-1)(xy+1)
c)(x+2)x2-x+1
d)(x-2y)x2+2xy+4y2
Bài 1: Thực hiện các phép tính sau
a, ( x2 -1 )( x2 + 2x )
b, ( x + 3 )( x2 + 3x -5 )
c, ( x -2y )( x2y2 - xy + 2y )
d, ( 1/2xy -1 )( x3 -2x -6 )
a) Ta có: ( x2 -1 )( x2 + 2x )
= x2( x2 + 2x ) - ( x2 + 2x )
= x4 + 2x3 - x2 - 2x
b) Ta có ( x + 3 )( x2 + 3x -5 )
= x( x2 + 3x -5 ) + 3( x2 + 3x -5 )
= x3 + 3x2 - 5x + 3x2 + 9x - 15
= x3 + 6x2 + 4x - 15
c) Ta có ( x -2y )( x2y2 - xy + 2y )
= x( x2y2 - xy + 2y ) - 2y( x2y2 - xy + 2y )
= x3y2 - x2y + 2xy - 2x2y3 + 2xy2 - 4y2
d) Ta có ( 1/2xy -1 )( x3 -2x -6 )
= 1/2xy( x3 -2x -6 ) - ( x3 -2x -6 )
= 1/2x4y - x2y - 3xy - x3 + 2x + 6
1:áp dụng quy tắc đối đầu hay thực hiện phép tính cộng
2x+1/2x2-x + 32x2/1-4x2 +1-2x/2x2+x
2:tính
a,4x2/x-2 +3/x-2 +19/2-x
b,2x/x2+2xy +y/xy-2y2 +4/x2-4y2
Bài 2:
a: \(=\dfrac{4x^2+3-19}{x-2}=\dfrac{4x^2-16}{x-2}=\dfrac{4\left(x-2\right)\left(x+2\right)}{x-2}=4x+8\)
b: \(=\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2}{x+2y}-\dfrac{1}{x-2y}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2x-4y-x-2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{x-6y+4}{\left(x+2y\right)\left(x-2y\right)}\)
Thực hiện phép tính:
1) ( x2 - 4xy + 4y2) : ( x - 2y )
2) ( 25x2 + 2xy + 1/25y2 ) : ( 5x + 1/5y)
1) Ta có: \(x^2-4xy+4y^2\)
\(=x^2-2.x.2y+\left(2y\right)^2\)
\(=\left(x-2y\right)^2\)
Phép tính trở thành: \(\left(x-2y\right)^2:\left(x-2y\right)=x-2y\)
2) Ta có: \(25x^2+2xy+\dfrac{1}{25}y^2\)
\(=\left(5x\right)^2+2.5x.\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\)
\(=\left(5x+\dfrac{1}{5}y\right)^2\)
Phép tính trở thành: \(\left(5x+\dfrac{1}{5}y\right)^2:\left(5x+\dfrac{1}{5}y\right)=5x+\dfrac{1}{5}y\)
1) (x² - 4xy + 4y²) : (x - 2y)
= (x - 2y)² : (x - 2y)
= x - 2y
2) (25x² + 2xy + 1/25 y²) : (5x + 1/5 y)
= 5x + 1/5 y)² : (5x + 1/5 y)
= 5x + 1/5 y
Bài 1. Rút gọn các biểu thức sau.
a) (x + 2y)(x2 - 2xy + 4y2) – (x - y)(x2 + xy + y2)
b) (x + 1)(x - 1)2 – (x + 2)(x2 - 2x + 4)
a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)
\(=x^3+8y^3-x^3+y^3\)
\(=9y^3\)
b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)
\(=x^3-x^2-x+1-x^3-8\)
\(=-x^2-x-7\)
1:áp dụng quy tắc đối đầu hay thực hiện phép tính cộng
2x+1/2x2-x + 32x2/1-4x2 +1-2x/2x2+x
2:tính
a,4x2/x-2 +3/x-2 +19/2-x
b,2x/x2+2xy +y/xy-2y2 +4/x2-4y2
Thực hiện phép tính
a) x. (x + y) + 5y - x2
b) (x - 2). (y + 1) - xy + 4
c) (4x2y + 12xy2 - 8xy) : (2xy)
d) (x - 4)2 - 7 + 8x
Bài 6. Cho x2 + xy = 3
Tính giá trị biểu thức M = x(x2 + y) + x2(y + 1) - 3(x + 1)
Bài 1:
a: \(x\left(x+y\right)+5y-x^2\)
\(=x^2+xy+5y-x^2\)
=xy+5y
b: \(\left(x-2\right)\left(y+1\right)-xy+4\)
\(=xy+x-2y-2-xy+4\)
=-2y+x+2
c: \(\dfrac{\left(4x^2y+12xy^2-8xy\right)}{2xy}\)
\(=\dfrac{2xy\cdot2x+2xy\cdot6y-2xy\cdot4}{2xy}\)
=2x+6y-4
d: \(\left(x-4\right)^2+8x-7\)
\(=x^2-8x+16+8x-7\)
\(=x^2+9\)
Làm phép tính
a)x/x-2y+x/x+2y+4xy/4y2-x2
b)4x+7/2x+2-3x+6/2x+2
c)x+9/x2-9-3/x2+3x
d)1/x2+3x+2-1/x2-4
BT9: Thực hiện phép tính
a, xy^2+x^2y+(-2xy^2)
b, 12x^2y^3z^4+(-7x^2y^3z^4)
c, -6xy^3-(-6xy^3)+6x^3
d, -x^2/2+7/2x^2+x
e, 2x^3+3x^3-1/3x^3
f, 5xy^2+1/2xy^2+1/4xy^2
a,
$xy^2+x^2y+(-2xy^2)=xy^2-2xy^2+x^2y=-xy^2+x^2y$
b,
$12x^2y^3z^4+(-7x^2y^3z^4)=12x^2y^3z^4-7x^2y^3z^4=5x^2y^3z^4$
c,
$-6xy^3-(-6xy^3)+6x^3=-6xy^3+6xy^3+6x^3=0+6x^3=6x^3$
d,
$\frac{-x^2}{2}+\frac{7}{2}x^2+x=(\frac{7}{2}-\frac{1}{2})x^2+x$
$=3x^2+x$
e,
$2x^3+3x^3-\frac{1}{3}x^3=(2+3-\frac{1}{3})x^3=\frac{14}{3}x^3$
f,
$5xy^2+\frac{1}{2}xy^2+\frac{1}{4}xy^2=(5+\frac{1}{2}+\frac{1}{4})xy^2$
$=\frac{23}{4}xy^2$
Thực hiện phép tính
a) (x-2)2 +4x
Phân tyichs đa thức thành nhân tử:
b)a3-27
a)4a2+2ab
c)x2-xy+2x-2y
d)y2-25+x2+2y
a) \(\left(x-2\right)^2+4x=x^2-4x+4+4x=x^2+4\)
b) \(a^3-27=\left(a-3\right)\left(a^2+3a+9\right)\)
a) \(4a^2+2ab=2a\left(2a+b\right)\)
c)\(x^2-xy+2x-2y=\left(x^2-xy\right)+\left(2x-2y\right)=x\left(x-y\right)+2\left(x-y\right)=\left(x+2\right)\left(x-y\right)\)