Những câu hỏi liên quan
Lã Hoàng Yến Nhi
Xem chi tiết
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Đặng Ngọc Quỳnh
18 tháng 10 2020 lúc 12:40

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa
Mai Tiến Đỗ
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 15:30

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

Bình luận (2)
dinh huong
Xem chi tiết
Vũ Lê Hồng Nhung
Xem chi tiết
Đức Lộc
Xem chi tiết
Nga Nguyễn
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết
ღ๖ۣۜLinh
21 tháng 10 2019 lúc 19:23

\(A=\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}+\frac{\left(x+z\right)\sqrt{\left(x+y\right)\left(y+z\right)}}{y}+\frac{\left(x+y\right)\sqrt{\left(y+z\right)\left(x+z\right)}}{z}.\)

Áp dụng bất đẳng thức Bunhiacopski ta có

\(\left(x+y\right)\left(x+z\right)\ge\left(x+\sqrt{yz}\right)^2\)

Tương tự \(\left(x+y\right)\left(y+z\right)\ge\left(y+\sqrt{xz}\right)^2\)

                 \(\left(y+z\right)\left(x+z\right)\ge\left(z+\sqrt{xy}\right)^2\)

\(\Rightarrow A\ge\frac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}+\frac{\left(x+z\right)\left(y+\sqrt{xz}\right)}{y}+\frac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\)

hay \(A\ge2\left(x+y+z\right)+\frac{\sqrt{yz}\left(y+z\right)}{x}+\frac{\left(x+z\right)\sqrt{xz}}{y}+\frac{\left(x+y\right)\sqrt{xy}}{z}\)

\(\Leftrightarrow A\ge2\left(x+y+z\right)+\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)

Đặt \(M=\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)

Ta có \(\left(x,y,z\right)\rightarrow\left(a^2,b^2,c^2\right)\)

Khi đó \(M=\frac{a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)}{a^2b^2c^2}\)

ÁP DỤNG BĐT AM-GM ta có

\(a^5b^3+a^3b^5\ge2\sqrt{a^8b^8}=2a^4b^4\)

\(b^5c^3+b^3c^5\ge2\sqrt{b^8c^8}=2b^4c^4\)

\(a^5c^3+a^3c^5\ge2\sqrt{a^8c^8}=2a^4c^4\)

Cộng từng vế ta được 

\(a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)\ge2\left(a^4b^4+b^4c^4+c^4a^4\right)\)

              \(\ge2a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow M\ge2\left(a^2+b^2+c^2\right)=2\left(x+y+z\right)\)

\(\Rightarrow A\ge4\left(x+y+z\right)=4\sqrt{2019}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{2019}}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thị Thảo Xuyên
Xem chi tiết