Cho các số thực dương x,y,z thỏa mãn xy+yz+xz=1. CMR:
\(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}=\frac{2}{\sqrt{\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)}}\)
1)\(\begin{cases}\sqrt{4x^2+\left(4x-9\right)\left(x-3y\right)}+\sqrt{3xy}=9y\\4\sqrt{\left(x+2\right)\left(3y+2x\right)}=3x+9\end{cases}\) 4)\(\begin{cases}\left(x^2+y\right)\sqrt{x-y+6}=2x^2-x+3y-2\\\sqrt{10x-xy-12}+1=\frac{y-x}{\sqrt{y-4}+\sqrt{6-x}}\end{cases}\)
2)\(\begin{cases}x^2+\left(y-6\right)^2=y+13x+27\\\sqrt{9x^2+\left(2x-3\right)\left(x-y\right)}+4\sqrt{xy}=7y\end{cases}\) 5)\(\begin{cases}\sqrt{4xy+\left(3\sqrt{xy}-7\right)\left(x-y\right)}+2\sqrt{xy}=4y\\\left(2x+1\right)\left[12y-1+9\sqrt{xy}-x^2-x\right]=27\left(x+1\right)\end{cases}\)
3)\(\begin{cases}\sqrt{\left(x+2\right)\left(y+1\right)+\left(x-y+1\right)\sqrt{y^2+1}}+\sqrt{x+2}=y+\sqrt{y+1}+1\\\sqrt{3x+1}-\sqrt{y+1}=2x^2+4x-y-1\end{cases}\)
tính giá trị của biểu thức A=\(\left(x^5+x^4-x^3+1\right)^{2012}+\frac{\left(x^2+x-3\right)^{2012}}{x^5+x^4-x^3-2^{2012}}\). Khi x=\(\frac{\sqrt{5-1}}{2}\)
1, \(x^3-x-3=2\sqrt{6x-x^2}\)
2, \(x^3+6x^2-171x-40\left(x+1\right)\sqrt{5x-1}+20=0\)
3, \(\sqrt[3]{x+3}+\sqrt[3]{x-3}=\sqrt[5]{x-5}+\sqrt[5]{x+5}\)
4. \(\left(\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{x+1}\right)^2=\frac{4\left(1+\sqrt{1+4x}\right)}{x+1+\sqrt{x^2+3x+2}}\)
\(\begin{cases}4x^3-4x^2-7x=\left(3y^2-6y+4\right)\sqrt{3y^2-6y+7}\\\left(x^3-3x^2\right)\left(\sqrt{x^2+\left(y-1\right)^2}+3\right)+8=\left(x^2+y^2-2y\right)^2-7\left(x^2+y^2-2y\right)\end{cases}\)
Cho x, y, z là số dương thỏa mãn xyz = 1. Chứng minh rằng :
\(\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^{^n}\ge3\)
Nghiệm của phương trình \(x^4+2x^3+2x^2-2x+1=\left(x^3+x\right)\sqrt{\frac{1}{x}-x}\) có dạng \(a+\sqrt{b}\) với a, b thuộc Z. Tính ab.
1.\(\sqrt{\frac{\left(1-x\right)}{x}}=\frac{\left(2x+x^2\right)}{1+x^2}\)
2. 3(2-\(\sqrt{x+2}\))=2x+\(\sqrt{x+6}\)
3. \(\sqrt[3]{x+2}+\sqrt[3]{x+1}=\sqrt[2]{2x^2}+\sqrt[3]{2x^2+1}\)
4. \(\sqrt[3]{x+24}+\sqrt{12-x}=6\)
Toán 10 ạ, giúp em với
Giải pt :
a) \(x^2+3x\sqrt[3]{3x+3}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
b) \(\sqrt{\left(x-1\right)\left(3-x\right)}+\sqrt{x+2}=\sqrt{x-1}+\sqrt{3-x}+\frac{x}{2}\)