bài này đặt ẩn đi nhìn hệ to quá cx ngại
bài này đặt ẩn đi nhìn hệ to quá cx ngại
1)\(\begin{cases}\sqrt{4x^2+\left(4x-9\right)\left(x-3y\right)}+\sqrt{3xy}=9y\\4\sqrt{\left(x+2\right)\left(3y+2x\right)}=3x+9\end{cases}\) 4)\(\begin{cases}\left(x^2+y\right)\sqrt{x-y+6}=2x^2-x+3y-2\\\sqrt{10x-xy-12}+1=\frac{y-x}{\sqrt{y-4}+\sqrt{6-x}}\end{cases}\)
2)\(\begin{cases}x^2+\left(y-6\right)^2=y+13x+27\\\sqrt{9x^2+\left(2x-3\right)\left(x-y\right)}+4\sqrt{xy}=7y\end{cases}\) 5)\(\begin{cases}\sqrt{4xy+\left(3\sqrt{xy}-7\right)\left(x-y\right)}+2\sqrt{xy}=4y\\\left(2x+1\right)\left[12y-1+9\sqrt{xy}-x^2-x\right]=27\left(x+1\right)\end{cases}\)
3)\(\begin{cases}\sqrt{\left(x+2\right)\left(y+1\right)+\left(x-y+1\right)\sqrt{y^2+1}}+\sqrt{x+2}=y+\sqrt{y+1}+1\\\sqrt{3x+1}-\sqrt{y+1}=2x^2+4x-y-1\end{cases}\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
( x; y thuộc R)
help me
#mã mã#
a,\(\left\{{}\begin{matrix}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=7\\\sqrt{x-20}+\sqrt{y+3}=6\end{matrix}\right.\)
c, Tìm m để hệ phương trình \(\left\{{}\begin{matrix}mx^2+\left|x\right|-y=1-m\\x^2+y^2=1\end{matrix}\right.\)
cho 2 số tự nhiên thoả mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
Tìm giá trị của biểu thức P=\(x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3x+3y\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
Giải hpt :
\(\left\{{}\begin{matrix}2\sqrt{x+3y+2}-3\sqrt{y}=\sqrt{x+2}\\\sqrt{y-1}-\sqrt{4-x}+8-x^2=0\end{matrix}\right.\)
Giải hệ \(\left\{{}\begin{matrix}x^2\left(4y^2+1\right)+2\left(x^2+1\right)\sqrt{x}=6\\x^2y\left(2+2\sqrt{4y^2+1}\right)=x+\sqrt{x^2+1}\end{matrix}\right.\)
Giải pt:
\(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\) \(x^2+3x+4=\left(x+3\right)\sqrt{x^2+x+2}\)
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) \(15x^2+2\left(x+1\right)\sqrt{x+2}=2-5x\)
\(\sqrt{\left(x-y\right)^2+4x+3}-\sqrt{x+1}=\sqrt{y}\)
\(\sqrt{y}+\sqrt{1-x}=2y^2+3x\)
Giải hệ phương trình.