Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Ngọc
Xem chi tiết
mạc trần
Xem chi tiết
Bestzata
27 tháng 10 2020 lúc 16:36

Để \(\sqrt{x}\) xác định

 \(\Leftrightarrow x\ge0\)

\(\Leftrightarrow-7x\le0\)

\(\Rightarrow\sqrt{-7x}\)không tồn tại 

\(\Leftrightarrow\frac{8x}{4x\sqrt{x-8x}}\)không tồn tại

=> A không tồn tại 

Khách vãng lai đã xóa
Nguyễn Thị Mai Anh
Xem chi tiết
Phan Lê Kim Chi
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
đề bài khó wá
29 tháng 11 2019 lúc 12:40

ĐK : \(x\ne-\frac{1}{2}\);\(x\ge0\)

\(\frac{\left(2x^2+8x+1\right)^2}{\left(2x+1\right)^2}=25x\)

\(25\left(4x^2+4x+1\right)=\left(4x^4+64x^2+1+32x^3+4x^2+16x\right)\)

\(4x^4+32x^3-32x^2-84x-24=0\)

giải tiếp đc nghiệm

Khách vãng lai đã xóa
Kawasaki
Xem chi tiết
Phạm Đức Anh
18 tháng 11 2019 lúc 21:10

bài lớp 8 à sao nghe sai sai có chép sai đầu bài ko

Khách vãng lai đã xóa
Kawasaki
18 tháng 11 2019 lúc 22:27

đề đúng đó bn

Khách vãng lai đã xóa
alibaba nguyễn
19 tháng 11 2019 lúc 15:09

Vô nghiệm quy đồng hết lên rồi xử xem sao

Khách vãng lai đã xóa
Nguyễn Hải Đăng
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết
Thắng Nguyễn
4 tháng 7 2017 lúc 23:10

b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)

\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)

\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)

\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)

Pt trong ngoặc VN suy ra x=2

Thắng Nguyễn
4 tháng 7 2017 lúc 23:00

a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)

\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)

\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)

pt trong căn vô nghiệm

suy ra x=1; x=-1

Thắng Nguyễn
4 tháng 7 2017 lúc 23:17

c)\(8x^2-13x+7=1+\frac{1}{x}\sqrt[3]{3x^2-2}\)

\(\Leftrightarrow8x^2-13x+7-2=\frac{1}{x}\sqrt[3]{3x^2-2}-1\)

\(\Leftrightarrow\left(x-1\right)\left(8x-5\right)-\frac{\frac{3x^2-2}{x^3}-1}{\frac{1}{x}\sqrt[3]{3x^2-2}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x-5\right)-\frac{\frac{-\left(x-1\right)\left(x^2-2x-2\right)}{x^3}}{\frac{1}{x}\sqrt[3]{3x^2-2}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\left(8x-5\right)-\frac{\frac{-\left(x^2-2x-2\right)}{x^3}}{\frac{1}{x}\sqrt[3]{3x^2-2}+1}\right)=0\)

SUy ra x=1 và 1 nghiệm lẻ nx trong ngoặc bn tự làm :V