\(8x^2+\sqrt{\frac{1}{x}}=\frac{5}{2}\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\frac{1}{\sqrt{4x^2+8x+5}}+\frac{1}{\sqrt{4y^2-8x+5}}=\frac{2}{\sqrt{\left(x+y\right)^2+1}}\\\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{y-3}}=\frac{2\sqrt{5}}{5}\end{matrix}\right.\)
RÚT GỌN A=\(\frac{\sqrt{x}+3}{6+5\sqrt{x}+6}:\left(\frac{8x}{4x\sqrt{x-8x}}-\frac{3\sqrt{x}}{3x-12}-\frac{1}{\sqrt{x}+2}\right)\)
Để \(\sqrt{x}\) xác định
\(\Leftrightarrow x\ge0\)
\(\Leftrightarrow-7x\le0\)
\(\Rightarrow\sqrt{-7x}\)không tồn tại
\(\Leftrightarrow\frac{8x}{4x\sqrt{x-8x}}\)không tồn tại
=> A không tồn tại
\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-\left(x+\frac{1}{x}\right)\)
\(\sqrt{8+x^3}+\sqrt{64-x^3}=x^4-8x^2+28\)
\(\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\)
Tìm điều kiện xác định và giải các phương trình sau
a) \(\frac{3}{x-5}.\frac{\sqrt{\left(5-x\right)^2.\left(x-1\right)}}{\sqrt{\left(x-1\right)^2}}-\frac{1}{x+1}\)
b) \(\sqrt{\frac{1+x}{2x}}:\sqrt{\frac{\left(x+1\right)^3}{8x}}-\sqrt{x^2-4x+4}=0\)
Giải phương trình:
1, \(\frac{2x^2+8x+1}{2x+1}=5\sqrt{x}\)
2, \(3\sqrt{x}+8=9x+\frac{1}{x}+\frac{1}{\sqrt{x}}\)
ĐK : \(x\ne-\frac{1}{2}\);\(x\ge0\)
\(\frac{\left(2x^2+8x+1\right)^2}{\left(2x+1\right)^2}=25x\)
\(25\left(4x^2+4x+1\right)=\left(4x^4+64x^2+1+32x^3+4x^2+16x\right)\)
\(4x^4+32x^3-32x^2-84x-24=0\)
giải tiếp đc nghiệm
Giải phương trình: \(\frac{8x\left(1-x^2\right)}{\left(1+x^2\right)^2}-\frac{2\sqrt{2}x\left(x+3\right)}{1+x^2}=5-\sqrt{2}\)
bài lớp 8 à sao nghe sai sai có chép sai đầu bài ko
Vô nghiệm quy đồng hết lên rồi xử xem sao
Giair hệ phương trình
\(\hept{\begin{cases}8x^2\\\end{cases}+\frac{1}{\sqrt{y}}=\frac{5}{2}}\) và \(8y^2+\frac{1}{\sqrt{x}}=\frac{5}{2}\)
Cho A = \(\frac{2x+15\sqrt{x}+18}{x+3\sqrt{x}-18}+\frac{3x+4\sqrt{x}+1}{2x-3\sqrt{x}-5}-\frac{8x-15\sqrt{x}}{2x\sqrt{x}-11x+5\sqrt{x}}\)
Tính A tại \(x=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
Giải phương trình
a)\(x^2+3\sqrt{x^2-1}\) \(=\sqrt{x^4-x^2+1}\)
b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
c)\(8x^2-13x+7=1+\frac{1}{x}\sqrt[3]{3x^2-2}\)
b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)
\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)
\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)
Pt trong ngoặc VN suy ra x=2
a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)
\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)
\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)
pt trong căn vô nghiệm
suy ra x=1; x=-1
c)\(8x^2-13x+7=1+\frac{1}{x}\sqrt[3]{3x^2-2}\)
\(\Leftrightarrow8x^2-13x+7-2=\frac{1}{x}\sqrt[3]{3x^2-2}-1\)
\(\Leftrightarrow\left(x-1\right)\left(8x-5\right)-\frac{\frac{3x^2-2}{x^3}-1}{\frac{1}{x}\sqrt[3]{3x^2-2}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x-5\right)-\frac{\frac{-\left(x-1\right)\left(x^2-2x-2\right)}{x^3}}{\frac{1}{x}\sqrt[3]{3x^2-2}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(8x-5\right)-\frac{\frac{-\left(x^2-2x-2\right)}{x^3}}{\frac{1}{x}\sqrt[3]{3x^2-2}+1}\right)=0\)
SUy ra x=1 và 1 nghiệm lẻ nx trong ngoặc bn tự làm :V