Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quang Huy Lê
Xem chi tiết
Luyện Hoàng Hương Thảo
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 9:23

a) \(\left(\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}+\frac{1}{\sqrt{ab}}\right).\sqrt{ab}\) (ĐK : \(\hept{\begin{cases}a>0\\b>0\end{cases}}\)hoặc \(\hept{\begin{cases}a< 0\\b< 0\end{cases}}\))

\(=ab+2b-a+1\)

b) \(\left(-\frac{am}{b}\sqrt{\frac{n}{m}}-\frac{ab}{n}.\sqrt{mn}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\) (ĐK bạn tự xét nhé ^^)

\(=\left(-\frac{a\sqrt{mn}}{b}-\frac{ab\sqrt{m}}{\sqrt{n}}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\)

\(=a^2b^2\left(\frac{-an}{b}-ab+\frac{a^2}{b^2}\right)=-a^3bn-a^3b^3+a^4=a^3\left(a-bn-b^3\right)\)

TXT Channel Funfun
Xem chi tiết
Đặng vân anh
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
19 tháng 6 2015 lúc 15:21

\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)};\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)

xét a<b \(\Rightarrow\frac{a+m}{b+m}>\frac{a}{b}\)

xét a=b \(\Rightarrow\frac{a+m}{b+m}=\frac{a}{b}\)

xét a>b \(\Rightarrow\frac{a+m}{b+m}

Yukino Yukinoshita
Xem chi tiết
Nguyễn Phạm Châu Anh
31 tháng 3 2017 lúc 20:24

\(\frac{a}{n\left(n+a\right)}\left(n,a\in N\right)\)

\(=\frac{n+a-n}{n\left(n+a\right)}\)

\(=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}\)

\(=\frac{1}{n}-\frac{1}{n+a}\)

\(\rightarrowđpcm.\)

lê nho nhân mã
12 tháng 5 2017 lúc 19:52

vl hay nhưng hỏi câu này mới cực hay

rút gọn

a.a.a.a.a.a.a.a.a=bao nhiêu

Pham Quoc Cuong
29 tháng 12 2017 lúc 22:28

Ta có: \(\frac{a}{n\left(n+a\right)}\left(a,n\in N\right)\)

\(=\frac{a+n-n}{n\left(n+a\right)}\)

\(=\frac{a+n}{n\left(a+n\right)}-\frac{n}{n\left(a+n\right)}\)

\(=\frac{1}{n}-\frac{1}{n+a}\)

\(\Rightarrow dpcm\)

khoa le nho
Xem chi tiết
khoa le nho
15 tháng 3 2020 lúc 11:05

Giúp mình 

Khách vãng lai đã xóa
Phùng Gia Bảo
15 tháng 3 2020 lúc 21:43

Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó, ta dễ dàng có được \(a^n\ge b^n\ge c^n\)và \(\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)

Áp dụng bất đẳng thức Chebyshev, ta có: \(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge\frac{1}{3}\left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

P/s: Đây là một bước nhỏ trong một cách chứng minh dạng tổng quát của bđt Nesbit

Khách vãng lai đã xóa
khoa le nho
16 tháng 3 2020 lúc 10:26

ủa trebyshev có dạng như vậy hả bạn 

Khách vãng lai đã xóa
cao trung hieu
Xem chi tiết
Tăng Quốc Nghĩa
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết