Cho a,b,c dương . CMR :
1) \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge6;x+y+z\ge6\)
2) \(a_1.a_2....a_n\le\frac{1}{\left(n-1\right)^n};\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_n+1}=n-1\)
3) \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{b+a+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\) với a, b, c thuộc \(\left[0;1\right]\)
Cho a,b,c >0.CMR:
\(\dfrac{1}{2\cdot a+b}+\dfrac{1}{2\cdot b+c}+\dfrac{1}{2\cdot c+a}>=\dfrac{3}{a+b+c}\)
Chứng minh bđt cô si với n số \(\frac{a_1+a_2+...+a_n}{n}\ge\sqrt[n]{a_1\times a_2\times...\times a_n}\)a1; a2;...; an>=0
áp dụng bất đẳng thức cô si chứng minh các bất đẳng thức:
a, (a+b+c)*(a^2+b^2+c^2)>=9abc
b,\(\left(1+a\right)\cdot\left(1+b\right)\cdot\left(1+c\right)>=\left(1+\sqrt[3]{abc}\right)^3\)
c, a^2*(1+b^2)+b^2*(1+c^2)+c^2(1+a^2)>=6abc
>=: lớn hơn hoặc bằng
cho x,y,z>0 va x*y*z=1
cm: (x+y)*(y+z)*(z+x)\(\ge\frac{8}{3}\cdot\left(x+y+z\right)\)
\(X\cdot\sqrt[3]{35-X^3}\cdot\left(X+\sqrt[3]{35-X^3}\right)=5\)
Cho a,b thỏa mãn điều kiện: a,b > 0 và a^2 + b^2 =2
CMR: \(\left(\frac{a}{b}+\frac{b}{a}\right)\left(\frac{a}{b^2}+\frac{b}{a^2}\right)\) ≥ 4
cho a, b, c là 3 số thực dương. cmr \(\frac{a^2}{b^2c}+\frac{b^2}{c^2a}+\frac{c^2}{a^2b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho a,b,c > 0 thỏa mãn \(ab+bc+ca=3\) . Cmr: \(\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\ge\frac{3}{4}\)