Cho abc=2020. Rút gọn A=\(\frac{2020a}{ab+2020a+2020}+\frac{b}{bc+b+2020}+\frac{c}{ac+c+1}\)
cho abc = 2020. Tính \(T=\frac{2020a}{2020+2020a+ab}+\frac{2020b}{2020+2020b+bc}+\frac{2020c}{2020+2020c+ca}\)
Thông thường sẽ tính ra giá trị $T$ cụ thể nhưng bài này thì với $a,b,c$ khác nhau thì giá trị $T$ cũng khác nhau.
Bạn xem lại đề xem có gõ nhầm chỗ nào không?
Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh rằng:
\(\frac{1}{a+2020}+\frac{1}{b+2020}+\frac{1}{c+2020}\le\frac{1}{2020a+1}+\frac{1}{2020b+1}+\frac{1}{2020c+1}\)
giúp mk vs mk đang cần gấp
Cho các số dương a,b,c thỏa mãn a+b+c=2020
Tìm Max của biểu thức \(P=\frac{a}{a+\sqrt{2020a+bc}}+\frac{b}{b+\sqrt{2020b+ca}}+\frac{c}{c+\sqrt{2020c+ab}}\)
\(\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(c+a\right)}\ge\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}=\sqrt{ac}+\sqrt{ab}\)
\(\Rightarrow\frac{a}{a+\sqrt{2020a+bc}}\le\frac{a}{a+\sqrt{ac}+\sqrt{ab}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự: \(\frac{b}{b+\sqrt{2020b+ca}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\) ; \(\frac{c}{c+\sqrt{2020c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng vế với vế: \(P\le1\)
Dấu "=" xảy ra khi \(a=b=c=...\)
Cho a,b,c là các số thực dương thỏa mãn:a+b+c=2020
chứng minh rằng:\(\frac{ab}{c+2020}=\frac{bc}{a+2020}=\frac{ac}{b+2020}\le5050\)
Cho a,b,c>0 thỏa mãn ab+bc+ca=2020
Cmr:\(\frac{a-b}{2020+c^2}+\frac{b-c}{2020+a^2}+\frac{c-a}{2020+b^2}\)
Ta có: \(2020+c^2=ab+bc+ca+c^2=\left(b+c\right)\left(c+a\right)\)
Tương tự => \(2020+a^2=\left(a+b\right)\left(c+a\right)\)
và \(2020+b^2=\left(a+b\right)\left(b+c\right)\)
=> PT = \(\frac{a-b}{\left(b+c\right)\left(c+a\right)}+\frac{b-c}{\left(a+b\right)\left(c+a\right)}+\frac{c-a}{\left(a+b\right)\left(b+c\right)}\)
= \(\frac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) = \(\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) = 0
Cho các phân số : ab/a+2020b =3/2 , bc/b+2020c = 4/3 ,ac/c+2020a = -12/5
Rút gọn phân số : T= abc/ab+bc+ca
Cho \(\frac{a}{c}\)= \(\frac{b}{d}\)
Chứng minh :a) \(\frac{a+2020b}{a-2020b}\) = \(\frac{e+2020d}{e-2020d}\)
b) \(\frac{2020\left(a+c\right)}{2020a}\)= \(\frac{b+d}{b}\)
c) 2a+3c(b+d)=(a+c)(2b+3d)
Giải giúp em nha
Cho \(\frac{a}{c}\)= \(\frac{b}{d}\)
Chứng minh :a) \(\frac{a+2020b}{a-2020b}\) = \(\frac{e+2020d}{e-2020d}\)
b) \(\frac{2020\left(a+c\right)}{2020a}\)= \(\frac{b+d}{b}\)
c) 2a+3c(b+d)=(a+c)(2b+3d)
Giải giúp em nha
a) Áp dụng dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{2020b}{2020d}=\frac{a+2020b}{c+2020d}=\frac{a-2020b}{c-2020d}\)
=> \(\frac{a+2020b}{c+2020d}=\frac{a-2020b}{c-2020d}\)
=> \(\frac{a+2020b}{a-2020b}=\frac{c+2020d}{c-2020d}\)
b) \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=> \(\frac{a}{b}=\frac{a+c}{b+d}\Rightarrow\frac{a}{a+c}=\frac{b}{b+d}\)
=> \(\frac{2020a}{2020\left(a+c\right)}=\frac{b}{b+d}\)
=> \(\frac{2020\left(a+c\right)}{2020a}=\frac{b+d}{b}\)
c) \(2a+3c\left(b+d\right)=\left(a+c\right)\left(2b+3d\right)\)
Câu c sai đề.
Cho (a+b+c)2 = 3(ab+bc+ca). Tinh P = \(\frac{a^{2020}+1}{a^{2020}+b^{2020}+c^{2020}+3}\)
\(\left(a+b+c\right)^2=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow P=\frac{a^{2020}+1}{a^{2020}+a^{2020}+a^{2020}+3}=\frac{a^{2020}+1}{3\left(a^{2020}+1\right)}=\frac{1}{3}\)