Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạt
Xem chi tiết
Võ Đông Anh Tuấn
29 tháng 11 2016 lúc 10:55

Áp dụng hằng đẳng thức

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Do \(a^3+b^3+c^3=3abc\) nên \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0.\)

Do đó : \(\left[\begin{array}{nghiempt}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{array}\right.\)

Nếu \(a+b+c=0\) thì do \(a,b,c\ne0\),ta có :

\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)

Nếu \(a^2+b^2+c^2-ab-bc-ac=0\) thì ta suy ra

\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Điều này chỉ xảy ra khi \(a-b=0;b-c=0;a-c=0\Leftrightarrow a=b=c.\)

Khi đó \(P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\).

Vậy \(P=-1\) hoặc \(P=8.\)

Angela jolie
Xem chi tiết
Akai Haruma
7 tháng 2 2020 lúc 19:01

Lời giải:

$A=a-\frac{ac}{c+a^2}+b-\frac{ab}{a+b^2}+c-\frac{bc}{b+c^2}$

$=\sum a-\sum \frac{ac}{c+a^2}$

Áp dụng BĐT AM-GM: $c+a^2\geq 2a\sqrt{c}$

$\Rightarrow A\geq \sum a-\frac{1}{2}\sum \sqrt{c}$

Áp dụng BĐT Cauchy-Schwarz:

$(\sum \sqrt{c})^2\leq (c+a+b)(1+1+1)$

$\Rightarrow \sum \sqrt{c}\leq 3\sum a$

Do đó $A\geq \sum a-\frac{1}{2}\sqrt{3\sum a}$

Đặt $\sqrt{3\sum a}=t$ thì $A\geq \frac{t^2}{3}-\frac{t}{2}(*)$

Từ điều kiện $ab+bc+ac=3abc\Rightarrow 3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

Áp dụng BĐT Cauchy-Schwarz:

$3=\sum \frac{1}{a}\geq \frac{9}{\sum a}\Rightarrow \sum a\geq 3$

$\Rightarrow t=\sqrt{3\sum a}\geq 3$

Do đó:

$\frac{t^2}{3}-\frac{t}{2}=(t-3)(\frac{t}{3}+\frac{1}{2})+\frac{3}{2}\geq \frac{3}{2}$ với mọi $t\geq 3(**)$

Từ $(*); (**)\Rightarrow A\geq \frac{3}{2}$

Vậy $A_{\min}=\frac{3}{2}$ khi $a=b=c=1$

Khách vãng lai đã xóa
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 9 2020 lúc 15:07

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Áp dụng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(A=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)

Khách vãng lai đã xóa
Nguyễn Thị Thúy Hà
Xem chi tiết
JOKER_Võ Văn Quốc
11 tháng 8 2016 lúc 9:26

Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Ta có:\(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a\cdot a^2+a\cdot a^2+a\cdot a^2}{a^3+a^3+a^3}\)\(\Rightarrow\frac{3a^3}{3a^3}=1\)

Trà My
25 tháng 10 2016 lúc 22:08

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Leftrightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ac}\)

\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

<=> a = b = c

Vậy \(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)

Nguyễn Doãn Bảo
27 tháng 10 2016 lúc 22:49

có gì khó thì hỏi mình qua số điện thoại hỗ trợ

0942 754209 hoặc 0915 343532

Nguyễn Trung Dũng
Xem chi tiết
Nguyệt
9 tháng 12 2018 lúc 11:50

\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc\Rightarrow abb+abc=abc+bbc\Rightarrow a=c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(c+a\right).bc=\left(b+c\right).ca\Rightarrow bcc+abc=abc+cca\Rightarrow a=b\end{cases}\Rightarrow a=b=c}\)

\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

p/s: bài này có nhiều cách lắm, cách này ko đc thì thử làm cách khác =))

Pham Van Hung
9 tháng 12 2018 lúc 11:51

\(\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab\left(b+c\right)=\left(a+b\right)bc\)

\(\Rightarrow ab^2+abc=abc+b^2c\Rightarrow ab^2=b^2c\Rightarrow a=c\) (1)

\(\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow bc\left(c+a\right)=\left(b+c\right)ca\)

\(\Rightarrow bc^2+bca=bca+c^2a\Rightarrow bc^2=c^2a\Rightarrow b=a\)(2)

Từ (1) và (2) được a = b = c

Khi đó:

\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

Ko cần bít
Xem chi tiết
Trần Hữu Ngọc Minh
4 tháng 12 2017 lúc 23:21

a^3+b^3+c^3-3abc

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)... 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)

thay vào và rút gọn ta được:\(a+b+c\)

Trần Thị Thảo Ngọc
Xem chi tiết
Trần Nguyễn Uyển Nhi
9 tháng 12 2017 lúc 12:31

ab+bc+ca=3abc <=> ab+bc+ca-3abc=0 <=> ab-abc+bc-abc+ca-abc=0 <=> ab(1-c)+bc(1-a)+ca(1-b)=0

Vì a,b,c dương => \(\hept{\begin{cases}1-c=0< =>c=1\\1-a=0< =>a=1\\1-b=0< =>b=1\end{cases}}\)

Thay a,b,c vừa tìm được vào biểu thức P <=> P=3/2

phạm minh tâm
9 tháng 12 2017 lúc 21:01

áp dụng BDT cô si ta có

\(a^2+1>=2a\)

\(b^2+1>=2b\)

\(c^2+1>=2c\)

do đó P<=\(\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

=\(\frac{1}{2}.\frac{3abc}{abc}=1,5\)

dấu = xảy ra khi và chỉ khi a=b=c=1

Bùi Vương TP (Hacker Nin...
7 tháng 1 2019 lúc 21:24

ab+bc+ca=3abc <=> ab+bc+ca-3abc=0 <=> ab-abc+bc-abc+ca-abc=0 <=> ab(1-c)+bc(1-a)+ca(1-b)=0

Vì a,b,c dương => {

1−c=0<=>c=1
1−a=0<=>a=1

Thay a,b,c vừa tìm được vào biểu thức P <=> P=3/2

Thuỳ
Xem chi tiết
Nguyễn Phúc Thiện
27 tháng 9 2016 lúc 7:27

không hỉu

Thuỳ
29 tháng 9 2016 lúc 20:11

chỉnh lại rồi nhé