Cho a+b+c=2011
Tính giá trị biểu thức A=\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
Cho a^3 + b^3 + c^3 = 3abc . Tính số trị biểu thức : N=bc/a^2+ca/b^2+ab/c^2.
Áp dụng hằng đẳng thức
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Do \(a^3+b^3+c^3=3abc\) nên \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0.\)
Do đó : \(\left[\begin{array}{nghiempt}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{array}\right.\)
Nếu \(a+b+c=0\) thì do \(a,b,c\ne0\),ta có :\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)
Nếu \(a^2+b^2+c^2-ab-bc-ac=0\) thì ta suy ra\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Điều này chỉ xảy ra khi \(a-b=0;b-c=0;a-c=0\Leftrightarrow a=b=c.\)
Khi đó \(P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\).
Vậy \(P=-1\) hoặc \(P=8.\)
Cho ba số thực dương a,b,c thỏa ab+bc+ca=3abc. Tìm GTNN của biểu thức A=\(\frac{a^3}{c+a^2}+\frac{b^3}{a+b^2}+\frac{c^3}{b+c^2}\)
Lời giải:
$A=a-\frac{ac}{c+a^2}+b-\frac{ab}{a+b^2}+c-\frac{bc}{b+c^2}$
$=\sum a-\sum \frac{ac}{c+a^2}$
Áp dụng BĐT AM-GM: $c+a^2\geq 2a\sqrt{c}$
$\Rightarrow A\geq \sum a-\frac{1}{2}\sum \sqrt{c}$
Áp dụng BĐT Cauchy-Schwarz:
$(\sum \sqrt{c})^2\leq (c+a+b)(1+1+1)$
$\Rightarrow \sum \sqrt{c}\leq 3\sum a$
Do đó $A\geq \sum a-\frac{1}{2}\sqrt{3\sum a}$
Đặt $\sqrt{3\sum a}=t$ thì $A\geq \frac{t^2}{3}-\frac{t}{2}(*)$
Từ điều kiện $ab+bc+ac=3abc\Rightarrow 3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
Áp dụng BĐT Cauchy-Schwarz:
$3=\sum \frac{1}{a}\geq \frac{9}{\sum a}\Rightarrow \sum a\geq 3$
$\Rightarrow t=\sqrt{3\sum a}\geq 3$
Do đó:
$\frac{t^2}{3}-\frac{t}{2}=(t-3)(\frac{t}{3}+\frac{1}{2})+\frac{3}{2}\geq \frac{3}{2}$ với mọi $t\geq 3(**)$
Từ $(*); (**)\Rightarrow A\geq \frac{3}{2}$
Vậy $A_{\min}=\frac{3}{2}$ khi $a=b=c=1$
Chứng minh: \(a^3+b^3+c^3=3abc\) thì a+b+c=0 hoặc a=b=c. Áp dụng cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính giá trị của biểu thức: \(A=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Chứng minh: \(a^3+b^3+c^3=3abc\) thì a+b+c=0 hoặc a=b=c. Áp dụng cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính giá trị của biểu thức: \(A=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Áp dụng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(A=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)
Cho các số \(a,b,c\ne0\)thỏa mãn : \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị biểu thức : \(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Ta có:\(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a\cdot a^2+a\cdot a^2+a\cdot a^2}{a^3+a^3+a^3}\)\(\Rightarrow\frac{3a^3}{3a^3}=1\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Leftrightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ac}\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
<=> a = b = c
Vậy \(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)
có gì khó thì hỏi mình qua số điện thoại hỗ trợ
0942 754209 hoặc 0915 343532
Cho 3 số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị biểu thức M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc\Rightarrow abb+abc=abc+bbc\Rightarrow a=c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(c+a\right).bc=\left(b+c\right).ca\Rightarrow bcc+abc=abc+cca\Rightarrow a=b\end{cases}\Rightarrow a=b=c}\)
\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
p/s: bài này có nhiều cách lắm, cách này ko đc thì thử làm cách khác =))
\(\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab\left(b+c\right)=\left(a+b\right)bc\)
\(\Rightarrow ab^2+abc=abc+b^2c\Rightarrow ab^2=b^2c\Rightarrow a=c\) (1)
\(\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow bc\left(c+a\right)=\left(b+c\right)ca\)
\(\Rightarrow bc^2+bca=bca+c^2a\Rightarrow bc^2=c^2a\Rightarrow b=a\)(2)
Từ (1) và (2) được a = b = c
Khi đó:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
Rút gọn biểu thức
\(\frac{\text{a^3+b^3+c^3-3abc}}{\text{a^2+b^2+c^2-ab-bc-ca}}\)
a^3+b^3+c^3-3abc
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)
thay vào và rút gọn ta được:\(a+b+c\)
Cho a, b là 3 số thực dương thỏa mãn điều kiện ab + bc + ca = 3abc . Tìm giá trị lớn nhất của biểu thức :
\(P=\frac{1}{^{a^2+1}}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\)
ab+bc+ca=3abc <=> ab+bc+ca-3abc=0 <=> ab-abc+bc-abc+ca-abc=0 <=> ab(1-c)+bc(1-a)+ca(1-b)=0
Vì a,b,c dương => \(\hept{\begin{cases}1-c=0< =>c=1\\1-a=0< =>a=1\\1-b=0< =>b=1\end{cases}}\)
Thay a,b,c vừa tìm được vào biểu thức P <=> P=3/2
áp dụng BDT cô si ta có
\(a^2+1>=2a\)
\(b^2+1>=2b\)
\(c^2+1>=2c\)
do đó P<=\(\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
=\(\frac{1}{2}.\frac{3abc}{abc}=1,5\)
dấu = xảy ra khi và chỉ khi a=b=c=1
ab+bc+ca=3abc <=> ab+bc+ca-3abc=0 <=> ab-abc+bc-abc+ca-abc=0 <=> ab(1-c)+bc(1-a)+ca(1-b)=0
Vì a,b,c dương => {
1−c=0<=>c=1 |
1−a=0<=>a=1 |
Thay a,b,c vừa tìm được vào biểu thức P <=> P=3/2
1) Cho \(a^3+b^3+c^3=3abc.\). Tính giá trị biểu thức
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) CMR : \(\left(n+3n-1\right)^2-1\) chia hết cho 24 với mọi n thuộc N
3) cho \(a+b+c=0\)
a) CMR : \(a^3+b^3+c^3=3abc\); b). tính giá trị biểu thức \(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)