Violympic toán 9

Angela jolie

Cho ba số thực dương a,b,c thỏa ab+bc+ca=3abc. Tìm GTNN của biểu thức A=\(\frac{a^3}{c+a^2}+\frac{b^3}{a+b^2}+\frac{c^3}{b+c^2}\)

Akai Haruma
7 tháng 2 2020 lúc 19:01

Lời giải:

$A=a-\frac{ac}{c+a^2}+b-\frac{ab}{a+b^2}+c-\frac{bc}{b+c^2}$

$=\sum a-\sum \frac{ac}{c+a^2}$

Áp dụng BĐT AM-GM: $c+a^2\geq 2a\sqrt{c}$

$\Rightarrow A\geq \sum a-\frac{1}{2}\sum \sqrt{c}$

Áp dụng BĐT Cauchy-Schwarz:

$(\sum \sqrt{c})^2\leq (c+a+b)(1+1+1)$

$\Rightarrow \sum \sqrt{c}\leq 3\sum a$

Do đó $A\geq \sum a-\frac{1}{2}\sqrt{3\sum a}$

Đặt $\sqrt{3\sum a}=t$ thì $A\geq \frac{t^2}{3}-\frac{t}{2}(*)$

Từ điều kiện $ab+bc+ac=3abc\Rightarrow 3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

Áp dụng BĐT Cauchy-Schwarz:

$3=\sum \frac{1}{a}\geq \frac{9}{\sum a}\Rightarrow \sum a\geq 3$

$\Rightarrow t=\sqrt{3\sum a}\geq 3$

Do đó:

$\frac{t^2}{3}-\frac{t}{2}=(t-3)(\frac{t}{3}+\frac{1}{2})+\frac{3}{2}\geq \frac{3}{2}$ với mọi $t\geq 3(**)$

Từ $(*); (**)\Rightarrow A\geq \frac{3}{2}$

Vậy $A_{\min}=\frac{3}{2}$ khi $a=b=c=1$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
khoimzx
Xem chi tiết
Angela jolie
Xem chi tiết
Vampire
Xem chi tiết
Angela jolie
Xem chi tiết
Vương Thiên Nhi
Xem chi tiết
Nguyễn Minh Nguyệt
Xem chi tiết
Bánh Mì
Xem chi tiết
khoimzx
Xem chi tiết
Angela jolie
Xem chi tiết