Tìm số dư trong phép chia của \(f\left(x\right)=x^{1994}+x^{1993}+1\) cho \(g\left(x\right)=x^2+x+1\)
Tìm số dư trong phép chia của \(f\left(x\right)=x^{1994}+x^{1993}+1\) cho \(g\left(x\right)=x^2+x+1\)
Biết f(x) chia cho x-2 dư 7, chia cho \(\left(x^2+1\right)\) dư 3x+5. Tìm dư trong phép chia f(x) cho \(\left(x-2\right)\left(x^2+1\right)\)
Tìm số dư cuối cùng của phép chia 2 đa thức:
\(\left(1+x^{1992}+x^{1993}+x^{1994}+x^{1995}\right):\left(1-x^2\right)\)
đang rảnh :v
Giải:
đa thức chia có bậc cao nhất là 2
=> số dư cuối cùng chỉ có thể có số hạng bậc cao nhất là 1 => sô dư có dạng: ax + b
Gọi thương của 2 đt đã cho là \(M\left(x\right)\)
Ta có: \(\left(1+x^{1992}+x^{1993}+x^{1994}+x^{1995}\right)=\left(1-x^2\right)\cdot M\left(x\right)+ax+b\)
Cho x = 1 => 5 = a + b
Cho x = -1 => 1 = -a + b
=> hpt: \(\left\{{}\begin{matrix}a+b=5\\-a+b=1\end{matrix}\right.\) giải hệ ta được \(\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
=> số dư cuối cùng là: \(2x+3\)
cái bài dễ thế mà k biết lm à , gà thế '-'
Cho hai đa thức \(f\left(x\right)=x^4+3x^3+x^2-4x+7;g\left(x\right)=x^3+1\)Tìm x để dư của phép chia f(x) cho g(x)= 0
\(f\left(x\right)=\left(x^4+x\right)+\left(3x^3+3\right)+x^2-5x+4=x\left(x^3+1\right)+3\left(x^3+1\right)+x^2-5x+4\)
Để dư bằng 0 thì \(x^2-5x+4=0\)
\(\Rightarrow x\left(x-4\right)-\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
tìm dư trong phép chia: \(f\left(x\right)=x^{27}+x^9+x^3+x\) chia cho \(g\left(x\right)=x^2-1\sqrt{2}\)
Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)mà
Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại
Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 .
Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có
\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)
\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)
Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)
Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)
Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\), \(b=0\)
Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)
Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm
Tìm phần dư trong phép chia f(x)=\(x^4-x^3-10x^2+6x+20\)cho g(x)=\(\left(x^2-9\right).\left(x+1\right)\)
Câu 1 :
Phân tích đa thức thành nhân tử
A = \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
Câu 2 :Tìm dư trong phép chia đa thức
f ( x ) =\(x^{1994}+x^{1993}+1\) cho \(x^2\)+x + 1 .
x1994+x1993+1:x2+x+1
=(x1994+x1993:x2+x)+1
=x996+1
vậy dư là x996+1
chắc zậy
Câu 1 tự lm.
Câu 2:
Ta có: \(f\left(x\right)=x^{1994}+x^{1993}+1\)
= \(\left(x^{1994}-x^2\right)+\left(x^{1993}-x\right)+\left(x^2+x+1\right)\)
= \(x^2\left(x^{1992}-1\right)+x\left(x^{1992}-1\right)+\left(x^2+x+1\right)\)
= \(\left[\left(x^3\right)^{664}-\left(1^3\right)^{664}\right]\left(x^2+x\right)+\left(x^2+x+1\right)\)
= \(\left(x^3-1^3\right)\left(x^{1989}+x^{1986}+...+x^3+1\right)+\left(x^2+x+1\right)\)
= \(\left(x-1\right)\left(x^2+x+1\right)\left(x^{1989}+x^{1986}+..+1\right)+\left(x^2+x+1\right)\)
= \(\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^{1989}+..+1\right)+1\right]\)
Vì \(x^2+x+1\) \(⋮\) \(x^2+x+1\)
=> \(f\left(x\right)\) \(⋮\) \(x^2+x+1\) hay số dư trong phép chia là 0
\(\text{Tìm dư trong phép chia đa thức:}\)
\(\text{f(x)+x}^{1994}+x^{1993}+1\)
Cho đa thức \(f\left(x\right)=6x^3-7x^2-16x+m\cdot f\left(x\right)\) chia hết cho \(2x-5\). Tìm \(m\) và số dư phép chia \(f\left(x\right)\) cho \(3x-2\).
\(f\left(x\right)=6x^3-7x^2-16x+m\)
Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:
\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)
\(\Rightarrow m=-10\)
Khi đó \(f\left(x\right)=6x^3-7x^2-16x-10\)
Số dư phép chia cho \(3x-2\):
\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)
Do chia hết , theo định lý Bezout:
Khi đó
Số dư phép chia cho :
\(f\left(x\right)=6x^3-7x^2-16x+m\)
Do \(f\left(x\right)⋮2x-5\) , theo định lý Bezout:
\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6\left(\dfrac{5}{2}\right)^3-7\left(\dfrac{5}{2}\right)^2-16\left(\dfrac{5}{2}\right)+m=0\)
\(\Rightarrow m=-10\)
Khi đó \(f\left(x\right)=6x^3-7x^2-16x-10\)
Số dư phép chia cho \(3x-2:\)
\(f\left(\dfrac{2}{3}\right)=6\left(\dfrac{2}{3}\right)^3-7\left(\dfrac{2}{3}\right)^2-16\left(\dfrac{2}{3}\right)-10=-22\)