Chứng minh rằng : \(2x+3y⋮13\Leftrightarrow x+8y⋮13\forall x\inℕ\) và ngược lại
cho các biểu thức : A=11x+29y và B=2x-3y. Chứng minh rằng nếu x,y là số nguyên và A chia hết cho 13 thì B chia hết cho 13. Ngược lại nếu B chia hết cho 13 thì A chia hết cho 13
A chia hết cho 13
A+B=11x+29y+2x-3y=13x-26y chia hết cho 13
=>B chia hết cho 13
B chia hết cho 13
A+B chia hết cho 13
=>A chia hết cho 13
Cho biểu thức:
A = 15x - 23y và B = 2x + 3y
Chứng minh rằng nếu x,y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13. Ngược lại B chia hết cho 13 thì A cũng chia hết cho 13
Ta phân tích biểu thức của A như sau: A = 15x - 23y = ( 13x +2x) - ( 26y -3y)
= ( 13x - 26y) + (2x +3y) = C + B.
Như vậy: Nếu A chia hết cho 13, thì do C= 13x -26y chia hết cho 13, nên B = 2x +3y cũng chia hết cho 13. Ngược lại,nếu B chia hết cho 13, thì do 13x - 26 y chia hết cho 13, nên A chia hết cho 13.
CHÚC BẠN HỌC TỐT
Cho các biểu thức:
A= 15x - 23y; B= 2x+3y
Chứng minh rằng nếu x, y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13 và ngược lại
Ta có :
\(A-B=\left(15x-23y\right)-\left(2x+3y\right)\)
\(\Leftrightarrow A-B=15x-23y-2x-3y\)
\(\Leftrightarrow A-B=\left(15x-2x\right)-\left(23y+3y\right)\)
\(\Leftrightarrow A-B=13x-26y\)
\(\Leftrightarrow13\left(x-2y\right)⋮13\)
Mà \(A⋮13\Rightarrow B⋮13\left(đpcm\right)\)
Mà \(B⋮13\Rightarrow A⋮13\left(đpcm\right)\)
Cho các biểu thức :
A=15x-23y ; B=2x+3y
Chứng minh rằng nếu x,y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13
Ngược lại nếu B chia hết cho 13 thì A cũng chia hết cho 13
Lời giải:
Bài toán tương đương: CMR $A\vdots 13\Leftrightarrow B\vdots 13$
Ta có:
$A=15x-23y\vdots 13$
$\Leftrightarrow 15x-23y-13(x-2y)\vdots 13$
$\Leftrightarrow 2x+3y\vdots 13$
$\Leftrightarrow B\vdots 13$
Ta có đpcm.
Chứng minh rằng : 7x+11y chia hết cho 13 thì x-4y chia hết cho 13 và ngược lại
Chứng minh rằng : 7x+11y chia hết cho 13 thì x-4y chia hết cho 13 và ngược lại
Cho các biểu thức A = 15x - 23y
B = 2x + 3y
CMR : Nếu x,y là các số nguyên và A ⋮ 13 thì B ⋮ 13 ngược lại nếu B ⋮ 13 thì A ⋮ 13
TA CÓ :A=15x - 23y= 13.(x-2y)+(2x+3y)
Mà B=2x+3y
=> A= 13(x-2y)+B
Ta có :13(x-2y)⋮13(nếu x,y là số nguyên); A⋮13
=>B⋮13
VẬY Nếu x,y là các số nguyên và A ⋮ 13 thì B ⋮ 13 ngược lại nếu B ⋮ 13 thì A ⋮ 13
Chung minh rang :
m + 4n \(⋮\Leftrightarrow\)10m + n \(⋮\)13 \(\forall\)m,n\(\inℕ\)
Chứng minh rằng :
\(x^2+4y^2+z^2-2x-6z+8y+15>0\forall x;y;z\)
Bài làm:
Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x,y,z\right)\)
x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x,y,z ( đpcm )