Cho x,y,z>0.cmr:\(\Sigma\sqrt[3]{\frac{x}{y+z}}\ge\frac{3}{\sqrt[3]{2}}\)
Cho x,y,z>0,x+y+z=1.CMR
\(\frac{\sqrt{x}}{1-x}+\frac{\sqrt{y}}{1-y}+\frac{\sqrt{z}}{1-z}\ge\frac{3\sqrt{3}}{2}\)
Ta có: \(\frac{1}{2}.2x\left(1-x\right)\left(1-x\right)\le\frac{1}{2}\left[\frac{2x+1-x+1-x}{3}\right]^3=\frac{4}{27}\)
\(\Rightarrow\sqrt{x}\left(1-x\right)\le\frac{2\sqrt{3}}{9}\Rightarrow\frac{1}{\sqrt{x}\left(1-x\right)}\ge\frac{9}{2\sqrt{3}}\)
\(\Rightarrow\frac{\sqrt{x}}{1-x}\ge\frac{3\sqrt{3}}{2}x\). Thiết lập tương tự hai BĐT còn lại và cộng theo vế thu được đpcm.
Cho x;y;z>0.CMR:\(\frac{\sqrt{x^2+2y^2}}{z}+\frac{\sqrt{y^2+2z^2}}{x}+\frac{\sqrt{z^2+2x^2}}{y}\ge\sqrt{3}\)
1 ) Cho a,b,c >0 và abc= 1.CMR:
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
2 ) Cho x,y,z > 0 và x+y+z=3
CMR : \(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
a/ \(VT\ge\frac{\left(\sqrt{b}+\sqrt{c}\right)^2}{2\sqrt{a}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)^2}{2\sqrt{b}}+\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\sqrt{c}}\)
\(VT\ge\frac{\left(\sqrt{b}+\sqrt{c}+\sqrt{c}+\sqrt{a}+\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(VT\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)
\(VT\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
b/ \(VT=\sum\frac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\)
\(VT\le\sum\frac{x}{x+\sqrt{xz}+\sqrt{xy}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Bài 1 :
Áp dụng BĐT Cô - si cho 2 số không âm ta có :
\(VT=\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\Sigma_{cyc}\sqrt{\frac{bc}{a}}\right)\)
\(\Leftrightarrow\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)+\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)\)
\(\Leftrightarrow\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
\(+3\sqrt[6]{abc}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Bài 2 :
Ta có :
\(\left(x-\sqrt{yz}\right)^2\ge0\Rightarrow x^2+yz\ge2x\sqrt{yz}\)
( Dấu " = " \(\Leftrightarrow x^2=yz\) )
Theo đề bài ta có : \(x+y+z=3\Rightarrow3x+yz=\left(x+y+z\right)x+yz=x^2+yz+x\left(y+z\right)\)
\(\ge x\left(y+z\right)+2x\sqrt{yz}\)
Suy ra \(\sqrt{3x+yz}\ge\sqrt{x\left(y+z\right)+2x\sqrt{yz}}=\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)
và \(x+\sqrt{3x+yz}\ge\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\Rightarrow\frac{x}{x+\sqrt{3x+yz}}\le\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự ta cũng có : \(\frac{y}{y+\sqrt{3y+zx}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}};\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng từng vế của các BĐT trên , ta được :
\(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)
Cho x;y;z > 0 thỏa mãn x2 + y2 + z2 = 3
CMR: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Áp dụng BĐT AM-GM cho 3 số không âm, ta có: \(0< \sqrt[3]{yz.1}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{3x}{y+z+1}\)
Làm tương tự với 2 hạng tử còn lại rồi cộng theo vế thì có:
\(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{z+x+1}+\frac{z}{x+y+1}\right)\)
\(=3\left(\frac{x^2}{xy+xz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{zx+yz+z}\right)\ge^{Schwartz}3.\frac{\left(x+y+z\right)^2}{x+y+z+2\left(xy+yz+zx\right)}\)
\(=3.\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x+y+z+2\left(xy+yz+zx\right)}\ge9.\frac{xy+yz+zx}{\sqrt{3\left(x^2+y^2+z^2\right)}+2\left(x^2+y^2+z^2\right)}\)
\(=9.\frac{xy+yz+zx}{3+2.3}=xy+yz+zx\) => ĐPCM.
Dấu "=" xảy ra khi x=y=z=1.
Cho x;y;z>0;\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) . CMR:\(\frac{\sqrt{x^2+2y^2}}{xy}+\frac{\sqrt{y^2+2z^2}}{yz}+\frac{\sqrt{z^2+2x^2}}{zx}\ge\sqrt{3}\)
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}=3\) 3 cmr \(X^2\sqrt{X}+y^2+\sqrt{Y}+z^2\sqrt{Z}+\frac{1}{\sqrt{X}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{Z}}\ge\)
cho x , y , z > 0 \(x^2+y^2+z^2=1\)
CMR \(P=\frac{x}{y^2+z^2}+\frac{y}{x^2+z^2}+\frac{z^2}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\)
Lời giải:
Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$
Ta sẽ chứng minh BĐT phụ sau:
$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$
$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$
Hoàn toàn tương tự:
$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$
$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$
Cộng theo vế và thu gọn:
$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$
Hay $P\geq \frac{3\sqrt{3}}{2}$
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$
Lời giải:
Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$
Ta sẽ chứng minh BĐT phụ sau:
$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$
$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$
Hoàn toàn tương tự:
$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$
$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$
Cộng theo vế và thu gọn:
$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$
Hay $P\geq \frac{3\sqrt{3}}{2}$
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$
Cho x, y, z >0 thỏa x + y + z >= 3. Chứng minh rằng : \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
Dễ dàng chứng minh được:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)
Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)
Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(x+y\ge2\sqrt{xy}\)(3)
Chứng mih tương tự, ta được;
\(y+z\ge2\sqrt{yz}\)(4);
\(z+x\ge2\sqrt{zx}\)(5)
Từ (3), (4), (5), ta được:
\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)
Mà theo đề bài, \(x+y+z\ge3\) nên:
\(\frac{x+y+z}{2}\ge\frac{3}{2}\)
Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)
Từ (2) và (6), ta được:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
\(\frac{x^2}{x+\sqrt{yz}}+\frac{x+\sqrt{yz}}{4}\ge2\sqrt{\frac{x^2}{4}}=x\)
Tượng tự ta có : \(\frac{y^2}{y+\sqrt{xz}}+\frac{y+\sqrt{xz}}{4}\ge y\)
\(\frac{z^2}{z+\sqrt{xy}}+\frac{z+\sqrt{xy}}{4}\ge z\)
Cộng vế với vế của BĐT ta được :
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}+\frac{x+\sqrt{yz}}{4}+\frac{y+\sqrt{xz}}{4}+\frac{z+\sqrt{xy}}{4}\ge x+y+z\)
\(VT\ge x+y+z-\frac{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{4}\)
mà \(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le x+y+z\)
\(VT\ge\frac{4\left(x+y+z\right)-2\left(x+y+z\right)}{4}=\frac{2\left(x+y+z\right)}{4}\)
mà \(x+y+z\ge3\)hay \(VT\ge=\frac{6}{4}=\frac{3}{2}\)
Dấu ''='' xảy ra <=> x = y = z = 1
Cho x, y, z là 3 số thực dương và x + y + z ≤ 1. CMR:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{82}\)
\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\)
\(\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)
\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)
\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)
\(\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)
\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)