cho hs:y=(m-3)x
tìm m biết khi x=1+\(\sqrt{3}\) thì hàm số có giá trị là -3
Cho hàm số bậc nhất: y = (m-3).x+√2
a/ Tìm m để không đồng biến, nghịch biến
b/ Tìm m biết khi x=3 thì hàm số có giá trị √3
a: Để hàm số đồng biến thì m-3>0
=>m>3
Để hàm số nghịch biến thì m-3<0
=>m<3
b: Thay x=3 và \(y=\sqrt{3}\) vào (d), ta được:
\(3\left(m-3\right)+\sqrt{2}=\sqrt{3}\)
=>\(3\left(m-3\right)=\sqrt{3}-\sqrt{2}\)
=>\(m-3=\dfrac{\sqrt{3}-\sqrt{2}}{3}\)
=>\(m=\dfrac{\sqrt{3}-\sqrt{2}+9}{3}\)
Bài 1: Cho hàm số\(y=x\sqrt{m-1}-\dfrac{3}{2}\).Tìm giá trị của m sao cho hàm số trên là hàm số bậc nhất
Bài 2: Với giá trị nào của k thì:
a)Hàm số \(y=\left(k^2-5k-6\right)x-13\) đồng biến?
b)Hàm số \(y=\left(2k^2+3k-2\right)x+3\) nghịch biến?
Bài 3: Cho hai hàm số bậc nhất y = 2x + k và y = (2m + 1)x + 2k - 3. Tìm điều kiện đối với m và k để hai đồ thị hàm số là:
a)Hai đường thẳng cắt nhau
b)Hai đường thẳng song song với nhau
c)Hai đường thẳng trùng nhau
Bài 4: Cho đường thẳng (d): y = (m - 3)x + 1 - m. Xác định m trong các trường hợp sau đây:
a) (d) cắt trục Ox tại điểm A có hoành độ x = 2
b) (d) cắt trục tung Ox tại điểm B có tung độ y = -3
c) (d) đi qua điểm C(-1 ; 4)
Với giá trị nào của m thì hàm số sau đây là hàm số bậc nhất
a, y=\(\sqrt{m-3}\times x+\dfrac{2}{3}\)
b, y= \(\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}\times x+2010\)
với giá trị nào của m thì hàm số ở ý a là hàm số đồng biến. Với gtri nào của m thì hàm số ở ý b là hàm nghịch biến
a) Ta có: \(y=\sqrt{m-3}\cdot x+\dfrac{2}{3}\left(m\ge3\right)\)
Để đây là hàm số bậc nhất thì: \(\sqrt{m-3}\ne0\Leftrightarrow m=3\)
Do: \(\sqrt{m-3}\ge0\forall m\ge3\)
Nên với \(m\ge3\) thì y đồng biến trên R
b) Ta có: \(y=\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}\cdot x+2010\left(m\ge0;m\ne5\right)\)
Để đây là hàm số bậc nhất thì: \(\sqrt{m}-\sqrt{5}\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m\ne5\end{matrix}\right.\)
Do \(\sqrt{m}+\sqrt{5}>0\Rightarrow\sqrt{m}-\sqrt{5}< 0\Leftrightarrow m< 5\)
Vậy với 0 ≤ m < 5 thì y nghịch biến trên R
a) Để hàm số là hàm số bậc nhất thì:
√(m - 3) > 0
⇔ m - 3 > 0
⇔ m > 3
Vậy với m > 3 thì hàm số đã cho là hàm bậc nhất
b) Để hàm số là hàm bậc nhất thì √m - √5 ≠ 0 và m ≥ 0
⇔ √m ≠ √5
⇔ m ≠ 5
Vậy m ≠ 5 và m ≥ 0 thì hàm số đã cho làm hàm số bậc nhất
*) Để hàm số ở câu a là hàm đồng biến thì m > 3
*) Để hàm số ở câu b là hàm nghịch biến thì √m < √5
⇔ 0 \(\le\) m < 5
Vậy 0 \(\le\) m < 5 thì hàm số ở câu b là hàm số nghịch biến
). Cho hàm số y = mx + 3.
a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.
b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.
). Cho hàm số y = mx + 3.
a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.
b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.). Cho hàm số y = mx + 3.
a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.
b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.
). Cho hàm số y = mx + 3.
a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.
b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.
a: Thay x=1 và y=1 vào (d), ta được:
m+3=1
hay m=-2
b: Vì (d)//y=-2x+3 nên a=-2
Vậy: (d): y=-2x+b
Thay x=0 và y=-3 vào (d), ta được:
b=-3
\(\sqrt{2f^2\left(x\right)+mf\left(x\right)-m-1}=f\left(x\right)-1\). Biết f(x) là hàm số bậc hai và có giá trị lớn nhất là 3. Tìm m để phương trình có 4 nghiệm.
\(\Leftrightarrow\sqrt{2t^2+mt-m-1}=t-1\) có 2 nghiệm thỏa mãn \(1\le t< 3\)
\(\Rightarrow2t^2+mt-m-1=t^2-2t+1\)
\(\Leftrightarrow f\left(t\right)=t^2+\left(m+2\right)t-m-2=0\) có 2 nghiệm \(1< t_1< t_2< 3\) (hiển nhiên \(t=1\) ko là nghiệm)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+2\right)^2+4\left(m+2\right)>0\\f\left(1\right)=1>0\\f\left(3\right)=9+3\left(m+2\right)-m-2>0\\1< \dfrac{t_1+t_2}{2}=\dfrac{-m-2}{2}< 3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)\left(m+6\right)>0\\2m+13>0\\2< -m-2< 6\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-2\\m< -6\end{matrix}\right.\\m>-\dfrac{13}{2}\\-8< m< -4\end{matrix}\right.\) \(\Rightarrow-\dfrac{13}{2}< m< -6\)
Cho hàm số: y=(1-2m)x+3 (d)
a) Với giá trị nào của m thì hàm số đã cho là hàm số nghịch biến.
b) Tìm m biết đồ thị hàm số đi qua A(-1;4) và vẽ đồ thị hàm số trong trường hợp này.
c) Với giá trị nào của m thì (d):y=(1-2m)x+3 tạo với các trục tọa độ thành tam giác có diện tích bằng 1.
Cho hàm số y = mx + 3.
a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.
b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.
a: Thay x=1 và y=1 vào (d), ta được:
m+3=1
hay m=-2
b: Vì (d)//y=-2x+3 nên a=-2
Vậy: (d): y=-2x+b
Thay x=0 và y=-3 vào (d), ta được:
b=-3
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Cho hàm số y=(m-1)x+3(d1): a)Với giá trị nào của m thì hàm số đồng biến,nghịch biến? b)Vẽ đồ thị hàm số đã cho khi m=3 c)Tìm giá trị của m để đồ thị hàm số (d1) song song đường thẳng (d2):y=2x-1 d) Tìm m để đồ thị hàm số (d1) cắt trục hoành tại điểm có hoành độ -2 GIÚP EM MN ƠI!!
a: Để hàm số y=(m-1)x+3 đồng biến trên R thì m-1>0
=>m>1
Để hàm số y=(m-1)x+3 nghịch biến trên R thì m-1<0
=>m<1
b: Thay m=3 vào (d), ta được:
\(y=\left(3-1\right)x+3=2x+3\)
Vẽ đồ thị:
c: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m-1=2\\3\ne-1\left(đúng\right)\end{matrix}\right.\)
=>m-1=2
=>m=3
d: Thay x=-2 và y=0 vào (d1), ta được:
\(-2\left(m-1\right)+3=0\)
=>-2(m-1)=-3
=>\(m-1=\dfrac{3}{2}\)
=>\(m=\dfrac{3}{2}+1=\dfrac{5}{2}\)