Biết x>4 , tìm GTNN của :
\(\frac{x}{\sqrt{x}-2}\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
cho P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a,Rút gọn
b,Tìm P khi x=25
c,Với x>9 Tìm GTNN của P
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Baì 1:Với x>4 Tìm GTNN của \(M=\frac{\sqrt{x}}{\sqrt{x}+1}\cdot\frac{\left(x+\sqrt{x}\right)}{\sqrt{x}-2}\)
Ta co:
\(M=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{x+\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-2}=\frac{x}{\sqrt{x}-2}=8+\frac{\left(\sqrt{x}-4\right)^2}{\sqrt{x}-2}\ge8\)
Dau '=' xay ra khi \(x=16\)
Vay \(M_{min}=8\)khi \(x=16\)
\(P= (\sqrt x-\frac{x+2}{\sqrt{x}+1}):(\frac{\sqrt x}{\sqrt x+1}-\frac{\sqrt x-4}{1-x})\)
a,rút gọn P
b,tìm gt của x thỏa mãn P<0
c,tìm gtnn của P
ĐKXĐ: x \(\ge\)0; x \(\ne\)1 ; x \(\ne\)4
a) P = \(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
P = \(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}:\frac{\sqrt{x}\left(1-\sqrt{x}\right)-\sqrt{x}+4}{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}\)
P = \(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\cdot\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-x-\sqrt{x}+4}\)
P = \(\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}-2\right)}{4-x}\)
P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b) P < 0 <=> \(\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)
Do \(\sqrt{x}+2>0\) => \(\sqrt{x}-1< 0\) => \(\sqrt{x}< 1\) => \(x< 1\)
kết hợp với đk => S = {x| \(0\le x< 1\)}
c) P = \(\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\ge-\frac{1}{2}\)
Do \(\sqrt{x}+2\ge2\) => \(-\frac{3}{\sqrt{x}+2}\ge-\frac{3}{2}\) => \(1-\frac{3}{\sqrt{x}+2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 0
Vậy MinP = -1/2 khi x = 0
A=\(\left(\frac{3\sqrt{x}}{\sqrt{x}+2}-\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{8\sqrt{x}}{x-4}\right):\left(2-\frac{2\sqrt{x}+3}{\sqrt{x}+2}\right)\left(x\ge0,x\ne4\right)\)
a, Rút gọn A.
b, Tìm GTNN của A khi x>4
\(A=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}+2\right)+8\sqrt{x}}{x-4}:\frac{2\left(\sqrt{x}+2\right)-2\sqrt{x}-3}{\sqrt{x}+2}\)
\(A=\frac{2x}{x-4}.\left(\sqrt{x}+2\right)=\frac{2x\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{2x}{\sqrt{x}-2}\)
CHO BT: P=\(\left(\frac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)
a) rg p
b) tính gt p biết x = \(\frac{53}{9-2\sqrt{7}}\)
c) tìm gtnn của \(\frac{1}{p}\)
\(P=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+2}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-\sqrt{x}}\right)\)
a.Rút gọn
b. Tìm x để P <0 (cứu mình câu này với T_T)
c. Tìm GTNN của P (câu này tớ cũng hông biết T_T)
Tớ đang cần gấp, mọi người giúp với nhé!