Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Van Hung
Xem chi tiết

Áp dụng bđt AM-GM dạng \(a+b\ge2\sqrt{ab}\)ta có

\(P^2=x+y+2+2\sqrt{\left(x+1\right)\left(y+1\right)}\)

       \(\le x+y+2+\left(x+1\right)+\left(y+1\right)=202\)

\(\Rightarrow P\le\sqrt{202}\)

Dấu "=" xảy ra khi \(x=y=\frac{99}{2}\)

Khách vãng lai đã xóa
Ngọc Nguyễn
2 tháng 2 2020 lúc 19:07

Áp dụng bất đẳng thức bu - nhi - a - cốp - ski cho 2 cặp số ( \(\sqrt{x+1},\sqrt{y+1}\)) và ( 1 , 1 )

\(\sqrt{x+1}+\sqrt{y+1}\le\left(x+1+y+1\right).\left(1+1\right)\)= 2.101 = 202

Dấu bằng xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{\sqrt{x+1}}{1}=\frac{\sqrt{y+1}}{1}\\x+y=99\end{cases}}\) 

                       \(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}=\sqrt{y+1}\\x+y=99\end{cases}}\)

                       \(\Leftrightarrow\hept{\begin{cases}x=\frac{99}{2}\\y=\frac{99}{2}\end{cases}}\)

                           

Khách vãng lai đã xóa
Ngọc Nguyễn
2 tháng 2 2020 lúc 19:40

P2 = x + 1 + \(2\sqrt{\left(x+1\right)\left(y+1\right)}\)+ y +1 = 101 + \(2\sqrt{\left(x+1\right)\left(y+1\right)}\ge101\)

\(\ge\sqrt{101}\)

Dấu bằng xảy ra \(\Leftrightarrow\)x + 1 = 0

                                  y + 1 = 0

Nếu x = -1 thì y = 100

Nếu y = -1 thì x = 100

Khách vãng lai đã xóa
Prissy
Xem chi tiết
IS
21 tháng 3 2020 lúc 20:56

\(P=\sqrt{x+1}+\sqrt{y+1}\ge\sqrt{x+1+y+1}=\sqrt{x+y+2}=\sqrt{101}\)

GTNN\(P=\sqrt{101}\)

\(P=\sqrt{x+1}+\sqrt{y+1}\)

\(=>\left(\sqrt{x+1}+\sqrt{y+1}\right)^2\le2\left(x+1+y+1\right)=2.101=202\)

GTLN \(P=202\)

Khách vãng lai đã xóa
Diệp Nguyễn Thị Huyền
Xem chi tiết
Đặng Ngọc Quỳnh
19 tháng 7 2021 lúc 19:06

Theo đề bài, ta có:

\(x^3+y^3=x^2-xy+y^2\)

hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)

+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)

+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)

Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

Khách vãng lai đã xóa
dsadasd
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 3 2021 lúc 5:30

\(x+y=\sqrt{x+6}+\sqrt{y+6}\ge0\Rightarrow x+y\ge0\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\le\sqrt{2\left(x+y+12\right)}\)

\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+12\right)\)

\(\Rightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)

\(\Rightarrow x+y\le6\) (do \(x+y+4>0\))

\(P_{max}=6\) khi \(x=y=3\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\)

\(\Rightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\ge x+y+12\)

\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-12\ge0\)

\(\Rightarrow\left(x+y+3\right)\left(x+y-4\right)\ge0\)

\(\Rightarrow x+y-4\ge0\) (do \(x+y+3>0\))

\(\Rightarrow x+y\ge4\)

\(P_{min}=4\) khi \(\left(x;y\right)=\left(-6;10\right)\) và hoán vị

Trương Huy Hoàng
30 tháng 3 2021 lúc 21:40

Ta có: x - \(\sqrt{x+6}\) = \(\sqrt{y+6}\) - y (x; y \(\ge\) -6)

\(\Leftrightarrow\) P = x + y  = \(\sqrt{x+6}+\sqrt{y+6}\)

\(\Leftrightarrow\) P2 = x + y + 12 + 2\(\sqrt{\left(x+6\right)\left(y+6\right)}\)

Áp dụng BĐT Cô-si cho 2 số ko âm x + 6 và y + 6 ta có:

\(x+y+12\ge2\sqrt{\left(x+6\right)\left(y+6\right)}\)

\(\Leftrightarrow\) P2 \(\le\) x + y + 12 + x + y + 12 = 2x + 2y + 24 = 2P + 24

\(\Leftrightarrow\) P2 - 2P - 24 \(\le\) 0

\(\Leftrightarrow\) P2 - 36 + 12 - 2P \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 6) + 2(6 - P) \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 4) \(\le\) 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}P-6\ge0\\P+4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}P-6\le0\\P+4\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}-4\ge P\ge6\left(KTM\right)\\6\ge P\ge-4\left(TM\right)\end{matrix}\right.\)

\(\Rightarrow\) -4 \(\le\) P \(\le\) 6

Vậy ...

Chúc bn học tốt!

Xuan Xuannajimex
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 4 2021 lúc 20:37

\(P=\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+xz}+\sqrt{z\left(x+y+z\right)+xy}\)

\(P=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}\)

\(P\le\dfrac{1}{2}\left(x+y+x+z\right)+\dfrac{1}{2}\left(x+y+y+z\right)+\dfrac{1}{2}\left(x+z+y+z\right)\)

\(P\le2\left(x+y+z\right)=2\)

\(P_{max}=2\) khi \(x=y=z=\dfrac{1}{3}\)

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Phan thu trang
Xem chi tiết
Lightning Farron
19 tháng 2 2017 lúc 22:57

Đk: \(x\ge2;y\ge-1;0< x+y\le9\)

Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)

Từ giả thiết suy ra

\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)

Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:

\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)

\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)

Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)

Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)

\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Đào Thu Hoà
Xem chi tiết
Đậu Đậu
14 tháng 6 2019 lúc 17:45

Mình nghĩ là làm như này nè:
Dễ cm:
+: \(\left(a+b\right)^2\le\)\(2\left(a^2+b^2\right)\)(với mọi a, b) ... Áp dụng => \(\left(x+y\right)^2\le\)\(2\)<=> \(-\sqrt{2}\le x+y\)\(\le\sqrt{2}\)
+: \(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)\(\le\sqrt{2\left(a+b\right)}\)(Cái đầu dùng tương đương còn cái hai dùng bđt BCS)
ÁP dụng =>\(\sqrt{8-5\sqrt{2}}\le\) \(\sqrt{8+5\left(x+y\right)}\le\)\(T\)\(\le\sqrt{16+10\left(x+y\right)}\)\(\le\sqrt{16+10\sqrt{2}}\)
Dấu "=" <=> ...

Đào Thu Hòa 2
14 tháng 6 2019 lúc 18:06

Bạn @Đậu Đậu gì đó ơi, Bạn giải tới đó thì max=\(16+10\sqrt{2}\)thì mình hiểu rồi , còn min =??? ghi rõ hộ mình nhé

Đậu Đậu
14 tháng 6 2019 lúc 18:14

\(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)

<=> a+b \(\le a+b+2\sqrt{ab}\)<=> \(\sqrt{ab}\ge0\)ĐÚNG
Thì áp dụng thôi