tìm x biết √x -3 -√9x-27 +2√16x-48 = 6
Giải phương trình :
a) \(\sqrt{9x+27}-\dfrac{1}{4}\sqrt{16x+48}+\sqrt{x+3}=6\)
b) \(2+\sqrt{2x-1}=x\)
b. 2 + \(\sqrt{2x-1}=x\) ĐKXĐ: \(x\ge0,5\)
<=> \(\sqrt{2x-1}\) = x - 2
<=> 2x - 1 = (x - 2)2
<=> 2x - 1 = x2 - 4x + 4
<=> -x2 + 2x + 4x - 4 - 1 = 0
<=> -x2 + 6x - 5 = 0
<=> -x2 + 5x + x - 5 = 0
<=> -(-x2 + 5x + x - 5) = 0
<=> x2 - 5x - x + 5 = 0
<=> x(x - 5) - (x - 5) = 0
<=> (x - 1)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
\(\sqrt{3-x}-\sqrt{27+9x}+1,25\sqrt{48-16x}=6\)
ĐKXĐ: \(-3\le x\le3\)
Từ phương trình đầu suy ra:
\(\sqrt{3-x}-3\sqrt{3+x}+5\sqrt{3-x}=6\)
⇒ \(6\sqrt{3-x}-3\sqrt{3+x}=6\) ⇒ \(2\sqrt{3-x}-\sqrt{3+x}=2\)
Đặt \(\sqrt{3-x}=a;\sqrt{3+x}=b\); ta có:
\(\left\{{}\begin{matrix}a^2+b^2=6\\2a-b=2\end{matrix}\right.\)⇒...... (Dùng phương pháp thế)
Giải phương trình
\(a.\dfrac{3}{4}\sqrt{4x}-\sqrt{4x}+5=\dfrac{1}{4}\sqrt{4x}\)
\(b.\sqrt{3-x}-\sqrt{27-9x}+1,25.\sqrt{48-16x}=6\)
\(c.\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2,5}=\dfrac{2}{7}\)
\(d.\sqrt{9x^2+12x+4}=4\)
d. \(\sqrt{9x^2+12x+4}=4\)
<=> \(\sqrt{\left(3x+2\right)^2}=4\)
<=> \(|3x+2|=4\)
<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)
\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)
\(\Leftrightarrow x=1\)
a \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
b \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
c \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}=-4}\)
d \(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=0\)
a: ĐKXĐ: x-5>=0
=>x>=5
\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)
=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
=>\(2\sqrt{x-5}=4\)
=>x-5=4
=>x=9(nhận)
b: ĐKXĐ: x-1>=0
=>x>=1
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)
=>\(-2\sqrt{x-1}=4\)
=>\(\sqrt{x-1}=-2\)(vô lý)
Vậy: Phương trình vô nghiệm
c: ĐKXĐ: x-2>=0
=>x>=2
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot\sqrt{9x-18}+6\cdot\sqrt{\dfrac{x-2}{81}}=-4\)
=>\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
=>\(\sqrt{x-2}\left(\dfrac{1}{3}-2+\dfrac{2}{3}\right)=-4\)
=>\(-\sqrt{x-2}=-4\)
=>x-2=16
=>x=18(nhận)
d: ĐKXĐ: x+3>=0
=>x>=-3
\(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\cdot\sqrt{16x+48}=0\)
=>\(3\sqrt{x+3}+4\sqrt{x+3}-\dfrac{3}{4}\cdot4\sqrt{x+3}=0\)
=>\(4\sqrt{x+3}=0\)
=>x+3=0
=>x=-3(nhận)
a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
= \(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)
= \(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
= \(2\sqrt{x-5}=4\)
= \(\sqrt{x-5}=2\)
= \(\left|x-5\right|=4\)
=> \(x-5=\pm4\)
\(x=\pm4+5\)
\(x=9;x=1\)
Vậy x=9; x=1
b) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)
\(-2\sqrt{x-1}=4\)
\(\sqrt{x-1}=-2\)
=>\(\left|x-1\right|=-2\)
\(x-1=\mp2\)
\(x=-3;x=1\)
Vậy x=-3; x=1
Giải pt
a1)1/3 căn x-2 -2/3 căn 9x-18 +6 căn x-2/81 =-4
a2)căn 9x+27 +4 căn x+3 -3/4 căn 16x+48 =0
a3)căn 1-x +căn 4-4x -1/3 căn 16-16x +5=0
a4)căn x-3=3-x
a5)căn x^2-1 -x^2+1=0
b1)căn x^2-2x+1 =x^2-1
b2)căn 4x^2-9 = 2 căn 2x+3
b3)3 căn x^2-1 +2 căn x+1=0
b4)căn x^2-4 +căn x^2+4x+4 =0
b5)căn 4x^2-20x+25 +4x^2=25
Giúp mình với
Giải phương trình:
\(\sqrt{3-x}+\dfrac{5}{4}\sqrt{48-16x}-\sqrt{27-9x}=6\)
GIÚP MÌNH VỚI Ạ
\(\Leftrightarrow\sqrt{3-x}+\dfrac{5}{4}\sqrt{16\left(3-x\right)}-\sqrt{9\left(3-x\right)}=6\)
\(ĐKXĐ:x\le3\)
\(\Leftrightarrow\sqrt{3-x}+5\sqrt{3-x}-3\sqrt{3-x}=0\)
\(\Leftrightarrow3\sqrt{3-x}=6\)
\(\Leftrightarrow\sqrt{3-x}=2\)
\(\Leftrightarrow x=-1\)
\(\sqrt{3-x}+\dfrac{5}{4}\sqrt{48-16x}-\sqrt{27-9x}=6\) (ĐKXĐ :x\(\ge\)3) \(\Leftrightarrow\sqrt{3-x}+\dfrac{5}{4}\sqrt{16\left(3-x\right)}-\sqrt{9\left(3-x\right)}=6\Leftrightarrow\sqrt{3-x}+\dfrac{5}{4}.4\sqrt{3-x}-3\sqrt{3-x}=6\Leftrightarrow\sqrt{3-x}+5\sqrt{3-x}-3\sqrt{3-x}=6\Leftrightarrow3\sqrt{3-x}=6\Leftrightarrow\sqrt{3-x}=2\Leftrightarrow\left(\sqrt{3-x}\right)^2=4\Leftrightarrow3-x=4\Leftrightarrow x=-1\)(loại vì không thỏa mãn ĐKXĐ)
Vậy phương trình đã cho có tập nghiệm là \(S=\left\{\varnothing\right\}\)
Giải phương trình a) \(\frac{3}{4}\sqrt{4x}-4x\) b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)
Phần a mình giải được r ạ mn giúp e với
b) ĐK: \(x\le3\)
\(\sqrt{x-3}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)
\(\Leftrightarrow\)\(\sqrt{x-3}-\sqrt{9.\left(x-3\right)}+1,25\sqrt{16\left(3-x\right)}=6\)
\(\Leftrightarrow\)\(\sqrt{x-3}-3\sqrt{3-x}+5\sqrt{3-x}=6\)
\(\Leftrightarrow\)\(3\sqrt{3-x}=6\)
\(\Leftrightarrow\)\(\sqrt{3-x}=2\)
\(\Leftrightarrow\)\(3-x=4\)
\(\Leftrightarrow\)\(x=-1\) (t/m)
Vậy....
giải pt:
a) \(\frac{5\sqrt{x}-2}{8\sqrt{x}+2,5}=\frac{2}{7}\)
b)\(\sqrt{9x^2+12x+4}=4\)
c)\(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}-6=0\)
d)\(\sqrt{x^2-10x+25}=2x+2\)
giải phương trình vô tỉ
a) \(\frac{3}{4}\sqrt{x}-\sqrt{9x}+5=\frac{1}{4}\sqrt{9x}\)
b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)
c) \(\sqrt{9x^2+12x+4}=4\)
d) \(\frac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\frac{x-1}{25}}=\frac{29}{15}\)
a) \(\frac{3}{4}\sqrt{x}-\sqrt{9x}+5=\frac{1}{4}\sqrt{9x}\)
ĐK : x ≥ 0
⇔ \(\frac{3}{4}\sqrt{x}-\sqrt{3^2x}-\frac{1}{4}\sqrt{3^2x}=-5\)
⇔ \(\frac{3}{4}\sqrt{x}-3\sqrt{x}-\frac{1}{4}\cdot3\sqrt{x}=-5\)
⇔ \(-\frac{9}{4}\sqrt{x}-\frac{3}{4}\sqrt{x}=-5\)
⇔ \(-3\sqrt{x}=-5\)
⇔ \(\sqrt{x}=15\)
⇔ \(x=225\)( tm )
b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)
ĐK : x ≤ 3
⇔ \(\sqrt{3-x}-\sqrt{3^2\left(3-x\right)}+\frac{5}{4}\sqrt{4^2\left(3-x\right)}=6\)
⇔ \(\sqrt{3-x}-3\sqrt{3-x}+\frac{5}{4}\cdot4\sqrt{3-x}=6\)
⇔ \(-2\sqrt{3-x}+5\sqrt{3-x}=6\)
⇔ \(3\sqrt{3-x}=6\)
⇔ \(\sqrt{3-x}=2\)
⇔ \(3-x=4\)
⇔ \(x=-1\)( tm )
c) \(\sqrt{9x^2+12x+4}=4\)
⇔ \(\sqrt{\left(3x+2\right)^2}=4\)
⇔ \(\left|3x+2\right|=4\)
⇔ \(\orbr{\begin{cases}3x+2=4\\3x+2=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}\)
d) \(\frac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\frac{x-1}{25}}=\frac{29}{15}\)
ĐK : x ≥ 1
⇔ \(\frac{1}{3}\sqrt{x-1}+2\sqrt{2^2\left(x-1\right)}-12\sqrt{\left(\frac{1}{5}\right)^2\cdot\left(x-1\right)}=\frac{29}{15}\)
⇔ \(\frac{1}{3}\sqrt{x-1}+2\cdot2\sqrt{x-1}-12\cdot\frac{1}{5}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\frac{1}{3}\sqrt{x-1}+4\sqrt{x-1}-\frac{12}{5}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\frac{29}{15}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\sqrt{x-1}=1\)
⇔ \(x-1=1\)
⇔ \(x=2\)( tm )