Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh An
Xem chi tiết
Lê Anh Tú
23 tháng 3 2020 lúc 11:54

a) \(x^2+3x+7=x^2+3x-2\Leftrightarrow x^2-x^2+3x-3x=-7-2\)

\(\Leftrightarrow0x=-9\)(vô lí)

Vậy phương trình vô nghiệm

b) \(2x^2-6x+6=0\)(xem đề lại nha bn cái này ko vô nghiệm)

chúc bn học tốt!

Khách vãng lai đã xóa
Nguyễn Thùy Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2023 lúc 0:45

=>2|x|+14-3=0

=>2|x|+11=0

=>2|x|=-11(loại)

Trần Võ Xuân Nhi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 8 2019 lúc 2:43

Trần Kim Tuyến
Xem chi tiết
Trần Minh Hoàng
15 tháng 1 2021 lúc 8:41

a) Ta có \(\left|x\right|\ge0\) nên |x| + 1 > 0 với mọi x. Do đó phương trình đã cho vô nghiệm.

b) Tương tự, phân tích \(x^2+2x+3=\left(x+1\right)^2+2>0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 8 2018 lúc 4:48

Ta có: 2(1 – 1,5x) + 3x = 0 ⇔ 2 – 3x + 3x = 0 ⇔ 2 + 0x = 0

Vậy phương trình vô nghiệm.

Đinh Hoàng Mai Hương
Xem chi tiết
Tâm _ 17
Xem chi tiết
Võ Đông Anh Tuấn
19 tháng 9 2016 lúc 10:41

Đặt \(B=x^2+x+3=0\)

\(\Rightarrow2B=2x^2+2x+3=0\)

\(\Leftrightarrow x^2+\left(x^2+2x+1\right)+2=0\)

\(\Leftrightarrow x^2+\left(x+2\right)^2+2=0\)

\(\Leftrightarrow x^2+\left(x+2\right)^2=-2\)

Có : \(x^2\ge0\)

\(\left(x+2\right)^2\ge0\)

\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)

Mà \(-2< 0\)

Vậy pt vô nghiệm .

Hoàng Lê Bảo Ngọc
19 tháng 9 2016 lúc 11:34

Cách 1. \(x^2+x+3=\left(x^2+x+\frac{1}{4}\right)+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>0\)

Dấu "=" không xảy ra nên pt vô nghiệm.

Cách 2. Ta có  \(x^2+x+3=\left(x^2+x+1\right)+2\)

Mà \(x^2+x+1\) là bình phương thiếu của một tổng nên vô nghiệm.

=> PT vô nghiệm.

Phạm Công Thành
19 tháng 9 2016 lúc 10:46

x2+x+3

=x2+2.x.\(\frac{1}{2}\) +\(\left(\frac{1}{2}\right)^2\)+\(\frac{11}{4}\)

=(x+\(\frac{1}{2}\))2+\(\frac{11}{4}\ge\frac{11}{4}>0\)

Vậy phương trình trên vô nghiệm.

Tâm_17
Xem chi tiết
Le Thi Khanh Huyen
13 tháng 7 2016 lúc 18:56

Đặt \(B=x^2+x+3=0\)

\(\Rightarrow2B=2x^2+2x+3=0\)

\(=x^2+\left(x^2+2x+1\right)+2=0\)

\(=x^2+\left(x+2\right)^2+2=0\)

\(\Rightarrow x^2+\left(x+2\right)^2=-2\)

Có:

\(x^2\ge0\)

\(\left(x+2\right)^2\ge0\)

\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)

Mà \(-2< 0\)

Vì vậy phương trình vô nghiệm.