Ta có: 2(1 – 1,5x) + 3x = 0 ⇔ 2 – 3x + 3x = 0 ⇔ 2 + 0x = 0
Vậy phương trình vô nghiệm.
Ta có: 2(1 – 1,5x) + 3x = 0 ⇔ 2 – 3x + 3x = 0 ⇔ 2 + 0x = 0
Vậy phương trình vô nghiệm.
Chứng tỏ rằng các phương trình sau đây vô nghiệm:
a. 2(x+1)=3+2x2(x+1)=3+2x
b. 2(1−1,5x)+3x=02(1−1,5x)+3x=0
c. |x|=−1
chứng tỏ các phương trình sau vô nghiệm:
a) 2(x+1)=3+2x b) 2(1-1,5x)+3x=0
Chứng tỏ rằng các phương trình sau đây vô nghiệm: 2(x + 1) = 3 + 2x
Chứng tỏ rằng các phương trình sau vô nghiệm:
a/ x 2 + 3x + 7 = x 2 + 3x – 2 b/ 2x 2 - 6x + 6 = 0
Chứng tỏ rằng các phương trình sau đây vô nghiệm: |x| = -1
Chứng tỏ rằng các phương trình sau vô nghiệm:
a)\((x-1)^2+3x^2=0\)
b)\(x^2+2x+3=0\)
chứng tỏ phương trình sau vô nghiệm
(x-3)^2+3x^3+4=0
C/tỏ rằng các phương trình sau vô nghiệm :
\(a,x^2+2x+3=0\)
\(b,\left(x-1\right)^2+3x^2=0\)
C/tỏ rằng các phương trình sau vô nghiệm :
\(a,x^2+2x+3=0\)
\(b,\left(x-1\right)^2+3x^2=0\)