Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Nguyễn Ngọc Anh
Xem chi tiết
Tây Ẩn
Xem chi tiết
Nguyễn Thanh Hải
2 tháng 3 2021 lúc 20:09

Bài dài quá, lần sau chia nhỏ câu hỏi nhé!!!!!

Mỹ Hằng Nguyễn Thị
12 tháng 9 2021 lúc 17:15

đúng vậy

Khách vãng lai đã xóa
Thuy_Vy_89
Xem chi tiết
Thắng Nguyễn
29 tháng 6 2016 lúc 15:34

a)(x-1)(x2+x+1)-x(x+2)(x-2)=5

=>x3-1-4x-x3=5

=>x3-x3+4x-1=5

=>4x-1=5

=>4x=6

=>x=3/2

b)(x-2)^3-(x-3)(x^2+3x+9)+6(x+1)^2=15

=>x3-6x2+12x-8-x3+27+6x2+12x+6=15

=>(x3-x3)-(-6x2+6x2)+(12x+12x)-8+27+6=15

=>24x+25=15

=>24x=-10

=>x=-5/12

c)6(x+1)^2-2(x+1)^3+2(x-1)(x^2+x+1)=1

=>6x2+12x+6-2x3-6x2-6x-2+2x3-2=1

=>(6x2-6x2)+(12x-6x)-(-2x3+2x3)+6-2-2=1

=>6x+2=1

=>6x=-1

=>x=-1/6

Trang Thùy
Xem chi tiết
D-low_Beatbox
18 tháng 3 2021 lúc 20:29

x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0 

⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)

Vậy pt vô nghiệm

Nguyễn Lê Phước Thịnh
18 tháng 3 2021 lúc 20:31

*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm

Ta có: \(x^2-4x+7=0\)

\(\Leftrightarrow x^2-4x+4+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3=0\)

mà \(\left(x-2\right)^2+3\ge3>0\forall x\)

nên \(x\in\varnothing\)(đpcm)

Tây Ẩn
Xem chi tiết
Akai Haruma
2 tháng 3 2021 lúc 19:37

Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn. 

nguyenvietquang
4 tháng 3 2021 lúc 16:33

x^2+2x-3/3+2x/4=x^2/3

ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2024 lúc 13:58

d: ĐKXĐ: \(x\notin\left\{2;-3\right\}\)

\(\dfrac{1}{x-2}-\dfrac{6}{x+3}=\dfrac{5}{6-x^2-x}\)

=>\(\dfrac{1}{x-2}-\dfrac{6}{x+3}=\dfrac{-5}{\left(x+3\right)\left(x-2\right)}\)

=>\(x+3-6\left(x-2\right)=-5\)

=>x+3-6x+12=-5

=>-5x+15=-5

=>-5x=-20

=>x=4(nhận)

e: ĐKXĐ: x<>-2

\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)

=>\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{5}{x^2-2x+4}\)

=>\(2\left(x^2-2x+4\right)-2x^2-16=5\left(x+2\right)\)

=>\(2x^2-4x+8-2x^2-16=5x+10\)

=>5x+10=-4x-8

=>9x=-18

=>x=-2(loại)

f: ĐKXĐ: \(x\in\left\{1;-1\right\}\)

\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{x^6-1}\)

\(\Leftrightarrow\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>\(\dfrac{\left(x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{2\left(x+2\right)^2}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>\(\left(x^3+1\right)\left(x^2-1\right)-\left(x^3-1\right)\left(x^2-1\right)=2\left(x^2+4x+4\right)\)

=>\(\left(x^2-1\right)\cdot\left(x^3+1-x^3+1\right)=2\left(x^2+4x+4\right)\)

=>\(2x^2+8x+8=\left(x^2-1\right)\cdot2=2x^2-2\)

=>8x=-10

=>x=-5/4(nhận)

Bạn thân của nhau
Xem chi tiết
luong thi my duyen
8 tháng 7 2018 lúc 6:55

1x2= 2       1x2x3=6             1x2x3x4=24               1x2x3x4x5=120            1x2x3x4x5x6=720                   1x2x3x4x5x6x7=5040 

1x2x3x4x5x6x7x8=40320                 1x2x3x4x5x6x7x8x9=362880           1x2x3x4x5x6x7x8x9x10=3628800

Thái Hoàng Thiên Nhi
8 tháng 7 2018 lúc 6:56

1 x 2 = 2

1 x 2 x 3 = 6

1 x 2 x 3 x 4 = 24

1 x 2 x 3 x 4 x 5 = 120

1 x 2 x 3 x 4 x 5 x 6 = 720

1 x 2 x 3 x 4 x 5 x 6 x 7 = 5040

1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 = 40320

1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = 362880

1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 = 3628800

Nguyen Mai Phuong
8 tháng 7 2018 lúc 8:55

1 . 2 = 2

1 .2 .3 = 6

1 .2 .3 .4 = 24

1 .2 .3 .4 .5 = 120

1 .2 .3 .4 .5 .6 = 720

1 .2 .3 .4 .5 .6 .7 = 5040

1 .2 .2 .4 .5 .6 .7 .8 = 40320

1 .2 .3 .4 .5 .6 .7 .8 .9 =362880

1 .2 .3 .4 .5 .6 .7 .8 .9 .10 = 3628800

          hok tốt

to tien cuong
Xem chi tiết
Huy Hoàng
8 tháng 7 2018 lúc 13:08

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 21:21

\(\Leftrightarrow\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{\left(x+1\right)\left(x-1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Suy ra: \(\left(x+1\right)^2\cdot\left(x^2-x+1\right)-\left(x-1\right)^2\cdot\left(x^2+x+1\right)=2\left(x+2\right)^2\)

\(\Leftrightarrow\left(x^2+2x+1\right)\left(x^2-x+1\right)-\left(x^2-2x+1\right)\left(x^2+x+1\right)=2\left(x+2\right)^2\)

\(\Leftrightarrow x^4+x^3+x+1-x^4+x^3+x-1=2\left(x+2\right)^2\)

\(\Leftrightarrow2x^3+2x-2\left(x+2\right)^2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)-2\left(x+2\right)^2=0\)

 

✰༺Nɧư ɴԍuʏệт༻ acc2 
Xem chi tiết