\(\frac{2}{3+2\sqrt{2}}-\frac{2}{3-2\sqrt{2}}+8\sqrt{2}\)
a)\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\frac{6\sqrt{2}-4}{3-\sqrt{2}}\)
b)\(\sqrt{2-\sqrt{3}}-\sqrt{\frac{3}{2}}\)
c)\(\frac{\sqrt{30}-\sqrt{2}}{\sqrt{8-\sqrt{15}}}-\sqrt{8-\sqrt{49+8\sqrt{3}}}\)
d) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
e)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
f)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
g)\(\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
a)\(\frac{4}{\sqrt{5}-1}+\frac{3}{\sqrt{5}-2}+\frac{16}{\sqrt{5}-3}\)
b)\(\frac{2}{\sqrt{8-2\sqrt{15}}}-\frac{1}{\sqrt{5-2\sqrt{6}}}-\frac{3}{\sqrt{7+2\sqrt{10}}}\)
c)\(\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}}{1-\sqrt{2}}\)
d)\(\sqrt{1+\frac{\sqrt{3}}{2}}-\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}\)
1
a. \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\) b.\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\) c. \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d. \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\) e. \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\) f. \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
a/ \(\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\frac{8\left(1+\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}=2\sqrt{5}-2\left(1+\sqrt{5}\right)=-2\)
b/ \(\frac{2\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}=\frac{-2}{\sqrt{6}}-\frac{1}{\sqrt{6}}=\frac{-3}{\sqrt{6}}=-\frac{\sqrt{6}}{2}\)
c/ \(\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}+\frac{\sqrt{\left(2+\sqrt{3}\right)^2}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}=2-\sqrt{3}+2+\sqrt{3}=4\)
d/ \(\frac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\frac{\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{8}=\frac{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}=1\)
e/ \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{\sqrt{2}}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\frac{\sqrt{2}\left(3-\sqrt{3}+3+\sqrt{3}\right)}{6}=\sqrt{2}\)
f/ \(\frac{9+4\sqrt{5}-8\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}-2}{2}\)
\(A=\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(B=\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(C=\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
\(D=\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(E=\frac{\left(\sqrt{5+2}\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Phần d mình sửa lại đề nha : \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{4}-4}\)
bn xem lại đề câu d đi sao mẫu lại bằng 0 rồi
Rút gọn biểu thức
1) \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8+2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
2) \(\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right):\left(\sqrt{5}-2\right)\)
3) \(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
4) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
5) \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...-\frac{1}{\sqrt{98}-\sqrt{99}}+\frac{1}{\sqrt{99}-\sqrt{100}}\)
6) \(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
7)\(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}+2\right)\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(24+8\sqrt{6}\right)\left(\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{2}-\sqrt{3}}\right)\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
Sao làm hổng ai bảo đú.n/g vậy :(((
A)\(\frac{6+2\sqrt{5}}{3-\sqrt{5}}-\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{\sqrt{5}}{2-\sqrt{5}}\)
B)\(\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}-\frac{3}{\sqrt{2}-1}\)
C)\(\frac{3+\sqrt{2}}{3-\sqrt{3}}-\frac{3+\sqrt{3}}{\sqrt{3}}-\frac{2}{\sqrt{3}-1}\)
D
Thực hiện phép tính:
a)\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
b) \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
c) \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d)\(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= \(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= -2
b); c); d) làm tương tự
Thực hiện các phép tính sau:
a)\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
b) \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
c) \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d) \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
e) \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
f) \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
a) Ta có: \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
\(=\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{10-10\sqrt{5}+2\sqrt{10}-10\sqrt{2}+8\sqrt{5}+8\sqrt{2}}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{2\sqrt{5}\left(\sqrt{5}-1\right)+2\sqrt{2}\left(\sqrt{5}-1\right)}{-\left(\sqrt{5}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{2\cdot\left(\sqrt{5}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}{-\left(\sqrt{5}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{2}{-1}=-2\)
b) Ta có: \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(=\frac{-2\left(\sqrt{3}-\sqrt{8}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=\frac{-2}{\sqrt{6}}-\frac{1}{\sqrt{6}}\)
\(=-\frac{3}{\sqrt{6}}=\frac{-\sqrt{3}}{\sqrt{2}}\)
c) Ta có: \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(=\sqrt{\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}+\sqrt{\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\frac{7-4\sqrt{3}}{4-3}}+\sqrt{\frac{7+4\sqrt{3}}{4-3}}\)
\(=\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{4+2\cdot2\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left|2-\sqrt{3}\right|+\left|2+\sqrt{3}\right|\)
\(=2-\sqrt{3}+2+\sqrt{3}\)(Vì \(2>\sqrt{3}>0\))
\(=4\)
d) Ta có: \(\frac{\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
\(=\frac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\cdot\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\left(6+2\sqrt{5}\right)}{4\left(\sqrt{5}+1\right)}\)
\(=\frac{\left|\sqrt{5}-1\right|\cdot\left(5+2\cdot\sqrt{5}\cdot1+1\right)}{2\cdot\left(\sqrt{5}+1\right)\cdot2}\)
\(=\frac{\left(\sqrt{5}-1\right)\cdot\left(\sqrt{5}+1\right)^2}{2\cdot\left(\sqrt{5}+1\right)\cdot2}\)(Vì \(\sqrt{5}>1\))
\(=\frac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}{4}\)
\(=\frac{5-1}{4}=\frac{4}{4}=1\)
e) Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\frac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2+\sqrt{3}}\right)}+\frac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2}+\sqrt{2-\sqrt{3}}\right)}\)
\(=\frac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{2-\left(2+\sqrt{3}\right)}+\frac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{2-\left(2-\sqrt{3}\right)}\)
\(=\frac{2-\sqrt{4+2\sqrt{3}}}{\sqrt{2}\cdot\left(2-2-\sqrt{3}\right)}+\frac{2+\sqrt{4-2\sqrt{3}}}{\sqrt{2}\cdot\left(2-2+\sqrt{3}\right)}\)
\(=\frac{2-\sqrt{3+2\cdot\sqrt{3}\cdot1+1}}{-\sqrt{6}}+\frac{2+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{6}}\)
\(=\frac{-2+\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{6}}+\frac{2+\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{6}}\)
\(=\frac{\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|}{\sqrt{6}}\)
\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{6}}\)
\(=\frac{2\sqrt{3}}{\sqrt{6}}=\frac{\sqrt{12}}{\sqrt{6}}=\sqrt{2}\)
f) Ta có: \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
\(=\frac{9+4\sqrt{5}-8\sqrt{5}}{2\left(\sqrt{5}-2\right)}\)
\(=\frac{9-4\sqrt{5}}{2\cdot\left(\sqrt{5}-2\right)}\)
\(=\frac{5-2\cdot\sqrt{5}\cdot2+2}{2\cdot\left(\sqrt{5}-2\right)}\)
\(=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}\)
\(=\frac{\sqrt{5}-2}{2}\)
\(\frac{6}{\sqrt{7}+2}+\sqrt{\frac{2}{8+3\sqrt{7}}}\)
\(\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}}{1-\sqrt{2}}\)
C=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4+\sqrt{10-2\sqrt{5}}}\)
a. P=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}+\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
b.P= (\(\frac{2}{\sqrt{3}-1}-\frac{52}{3\sqrt{3}-1}+\frac{12}{3-\sqrt{3}}\)) ( 5+\(\sqrt{27}\))
c. P= (\(\frac{2+\sqrt{2}}{\sqrt{2}+1}+1\))(\(\frac{2-\sqrt{2}}{\sqrt{2}-1}-1\))
d. P=\(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-\sqrt{2}\)
đ. P=(2+\(\sqrt{4+\sqrt{6+2\sqrt{5}}}\) )(\(\sqrt{10}-\sqrt{2}\) )
e. P= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
ê. P= \(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)
g. G= \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
h. H=\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\)
i. I= \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
a)
\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{3+1-2\sqrt{3.1}}}{\sqrt{2}(\sqrt{3}-1)}=\frac{\sqrt{(\sqrt{3}-1)^2}}{\sqrt{2}(\sqrt{3}-1)}=\frac{\sqrt{3}-1}{\sqrt{2}(\sqrt{3}-1)}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\)
\(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9-2\sqrt{20.9}}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}-3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}-3)}\)
\(=\sqrt{9}=3\)
\(\Rightarrow P=\frac{\sqrt{2}}{2}+3\)
b)
\(\frac{2}{\sqrt{3}-1}-\frac{52}{3\sqrt{3}-1}+\frac{12}{3-\sqrt{3}}=\frac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}-\frac{52(3\sqrt{3}+1)}{(3\sqrt{3}-1)(3\sqrt{3}+1)}+\frac{12(3+\sqrt{3})}{(3-\sqrt{3})(3+\sqrt{3})}\)
\(=\frac{2(\sqrt{3}+1)}{2}-\frac{52(3\sqrt{3}+1)}{26}+\frac{12(3+\sqrt{3})}{6}\)
\(=\sqrt{3}+1-2(3\sqrt{3}+1)+2(3+\sqrt{3})=9\sqrt{3}+9=5-3\sqrt{3}\)
\(\Rightarrow P=(5-3\sqrt{3})(5+3\sqrt{3})=-2\)
c)
\(P=\left[\frac{\sqrt{2}(\sqrt{2}+1)}{\sqrt{2}+1}+1\right]\left[\frac{\sqrt{2}(\sqrt{2}-1)}{\sqrt{2}-1}-1\right]\)
\(=(\sqrt{2}+1)(\sqrt{2}-1)=2-1=1\)
d)
\(P\sqrt{2}=\sqrt{18+2\sqrt{17}}-\sqrt{18-2\sqrt{17}}-2=\sqrt{17+1+2\sqrt{17.1}}-\sqrt{17+1-2\sqrt{17.1}}-2\)
\(=\sqrt{(\sqrt{17}+1)^2}-\sqrt{(\sqrt{17}-1)^2}-2=(\sqrt{17}+1)-(\sqrt{17}-1)-2=0\)
\(\Rightarrow P=0\)
đ)
\(2+\sqrt{4+\sqrt{6+2\sqrt{5}}}=2+\sqrt{4+\sqrt{5+1+2\sqrt{5.1}}}=2+\sqrt{4+\sqrt{(\sqrt{5}+1)^2}}\)
\(=2+\sqrt{4+\sqrt{5}+1}=2+\sqrt{5+\sqrt{5}}\)
\(\Rightarrow P=(2+\sqrt{5+\sqrt{5}})(\sqrt{10}-\sqrt{2})\), cái số này rút gọn không có ý nghĩa, sẽ ra số rất xấu, bạn xem lại đề.
e)
\(P=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+(\sqrt{4}+\sqrt{6}+\sqrt{8})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})(1+\sqrt{2})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)