A)\(\frac{6+2\sqrt{5}}{3-\sqrt{5}}-\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{\sqrt{5}}{2-\sqrt{5}}\)
B)\(\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}-\frac{3}{\sqrt{2}-1}\)
C)\(\frac{3+\sqrt{2}}{3-\sqrt{3}}-\frac{3+\sqrt{3}}{\sqrt{3}}-\frac{2}{\sqrt{3}-1}\)
D
a. P=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}+\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
b.P= (\(\frac{2}{\sqrt{3}-1}-\frac{52}{3\sqrt{3}-1}+\frac{12}{3-\sqrt{3}}\)) ( 5+\(\sqrt{27}\))
c. P= (\(\frac{2+\sqrt{2}}{\sqrt{2}+1}+1\))(\(\frac{2-\sqrt{2}}{\sqrt{2}-1}-1\))
d. P=\(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-\sqrt{2}\)
đ. P=(2+\(\sqrt{4+\sqrt{6+2\sqrt{5}}}\) )(\(\sqrt{10}-\sqrt{2}\) )
e. P= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
ê. P= \(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)
g. G= \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
h. H=\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\)
i. I= \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
1,Rút gọn:
a, \(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+2}\)
b,\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
a. P= (\(3+\sqrt{2}+\sqrt{6}\))(\(\sqrt{6-3\sqrt{3}}\))
b. A=(\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\)): (\(\sqrt{6}+11\))
c. B= \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}\)-\(\sqrt{8}\)
d. C= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
đ. D=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
e. E= \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
ê. G= \(\sqrt{4+5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
g. H=\(\frac{2\sqrt{4+\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
i. I=\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
k. K=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Tính:
\(B=\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}}{1-\sqrt{2}}\)
Tính:
a) \(6\sqrt{\frac{1}{2}}-3\sqrt{8}+\sqrt{19+6\sqrt{2}}\)
b) \(\sqrt{\frac{2}{7+3\sqrt{5}}}+\frac{2}{3-\sqrt{5}}-\frac{2+3\sqrt{2}}{\sqrt{2}}\)
rút gọn
a) \(\frac{7\sqrt{2}+2\sqrt{7}}{\sqrt{14}}-\frac{5}{\sqrt{7}+\sqrt{5}}\)
b) \(\frac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
c) \(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16\text{ }+8\sqrt{5}}\)
helppp mee
Rút gọn biểu thức:
\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)
BÀI 1: RÚT GỌN
1)\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)
2)\(\sqrt{7+2\sqrt{10}}+2\sqrt{\frac{1}{5}}-\frac{1}{\sqrt{5}-2}\)
3)\(\frac{3}{\sqrt{3}-1}+\sqrt{\frac{4}{3}}-\sqrt{8+2\sqrt{5}}\)
4)\(3\sqrt{\frac{16x}{81}}+\frac{5}{4}\sqrt{\frac{4x}{25}}-\frac{2}{x}\sqrt{\frac{9a^3}{4}}\)
5)\(\frac{1}{3}\sqrt{3a}-\frac{2}{3}\sqrt{\frac{27a}{4}}+\frac{5}{a}\sqrt{\frac{12a^3}{5}}\)
BÀI 2: GIẢI PHƯƠNG TRÌNH
\(1)\sqrt{5x-1}=\sqrt{2}-1\\ 2)\sqrt{1-2x}=\sqrt{3}-1\\ 3)4\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=20\\ 4)\frac{3}{5}\sqrt{\frac{25x-75}{16}}-\frac{1}{14}\sqrt{49x-147}=20\\ 5)\frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
BÀI 3: CHO BIỂU THỨC
Q=\(\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{2\sqrt{x}}{x-4}\) ĐKXĐ x ≥ 0, x ≠ 4
a) Rút gọn biểu thức Q
b) Tính Q thì x = 81
c) Tìm x để Q = \(\frac{6}{5}\)
d) Tìm x để nguyên đó Q nguyên