a) Ta có: \(\frac{7\sqrt{2}+2\sqrt{7}}{\sqrt{14}}-\frac{5}{\sqrt{7}+\sqrt{5}}\)
\(=\frac{\sqrt{14}\left(\sqrt{7}+\sqrt{2}\right)}{\sqrt{14}}-\frac{5\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)
\(=\frac{2\left(\sqrt{7}+\sqrt{2}\right)-5\left(\sqrt{7}-\sqrt{5}\right)}{2}\)
\(=\frac{2\sqrt{7}+2\sqrt{2}-5\sqrt{7}+5\sqrt{5}}{2}\)
\(=\frac{2\sqrt{2}-3\sqrt{7}+5\sqrt{5}}{2}\)
b) Ta có: \(\frac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(=\frac{\sqrt{2}\left(6+2\sqrt{5}\right)}{4\sqrt{2}+\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}}+\frac{\sqrt{2}\left(6-2\sqrt{5}\right)}{4\sqrt{2}-\sqrt{2}\cdot\sqrt{6-2\sqrt{5}}}\)
\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\cdot\sqrt{\left(\sqrt{5}+1\right)^2}}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\cdot\left|\sqrt{5}+1\right|}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\left|\sqrt{5}-1\right|}\)
\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\left(\sqrt{5}+1\right)}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\left(\sqrt{5}-1\right)}\)(Vì \(\sqrt{5}>1>0\))
\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{10}+\sqrt{2}}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{10}+\sqrt{2}}\)
\(=\frac{6\sqrt{2}+2\sqrt{10}}{5\sqrt{2}+\sqrt{10}}+\frac{6\sqrt{2}-2\sqrt{10}}{5\sqrt{2}-\sqrt{10}}\)
\(=\frac{6+2\sqrt{5}}{5+\sqrt{5}}+\frac{6-2\sqrt{5}}{5-\sqrt{5}}\)
\(=\frac{\left(\sqrt{5}+1\right)^2}{\sqrt{5}\left(\sqrt{5}+1\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}\left(\sqrt{5}-1\right)}\)
\(=\frac{\sqrt{5}+1+\sqrt{5}-1}{\sqrt{5}}\)
\(=\frac{2\sqrt{5}}{\sqrt{5}}=2\)
c) Đặt \(A=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)
Ta có: \(A=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)
\(\Leftrightarrow A^3=32-12\cdot\left(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\right)\)
\(=32-12A\)
\(\Leftrightarrow A^3+12A-32=0\)
\(\Leftrightarrow A^3-2A^2+2A^2-4A+16A-32=0\)
\(\Leftrightarrow A^2\left(A-2\right)+2A\left(A-2\right)+16\left(A-2\right)=0\)
\(\Leftrightarrow\left(A-2\right)\left(A^2+2A+16\right)=0\)
mà \(A^2+2A+16>0\)
nên A-2=0
hay A=2
Vậy: \(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}=2\)