cho ΔABC đều, cạnh là a. tính \(S_{ABC}\)theo a.
Cho ΔABC vuông tại A. Từ trung điểm E của cạnh AC kẻ EF ⊥ BC.
a) CM: AF = BC.cosC
b) BC = 20, sinC = 0,6. Tính \(S_{ABC}\)
c) AF cắt BE tại O. Tính sinAOB
Cho hình chóp \(S_{ABC}\) có mặt bên \(S_{BC}\) là \(\Delta\) đều cạnh a , \(S_{A\perp\left(ABC\right)}\) biết \(\widehat{BAC}=120^o\)
Tính \(V_{S_{ABC}}\) theo a .
Gọi I là trung điểm của BC
tam giác SBC đều cạnh a
=> SI \(\perp\) BC
Mà : BC \(\perp\) SA (SA \(\perp\)(ABC))
=> BC \(\perp\) (SAI) => BC \(\perp\) AI
=> \(S_{ABC}=\dfrac{1}{2}BC.AI\)
Ta có : Tam giác ABC có đường trung tuyến AI là đường cao
=> Tam giác ABC cân tại A
-> AI là phân giác
Xét \(\Delta\) vuông \(AIB\) có : \(AI=BI.cot60^o\)
= \(\dfrac{a}{2}\cdot\dfrac{1}{\sqrt{3}}=\dfrac{a}{2\sqrt{3}}\)
Xét \(\Delta\) vuông \(SAI\) có :
\(SA=\sqrt{SI^2-AI^2}\)
\(SI\) là đường cao của \(\Delta\) đều cạnh a => SI = \(\dfrac{a\sqrt{3}}{2}\)
=> SA = \(\sqrt{\dfrac{3a^2}{4}-\dfrac{a^2}{12}}=\dfrac{a\sqrt{2}}{\sqrt{3}}\)
=> \(V_{SABC}=\dfrac{1}{3}S_{ABC}.SA=\dfrac{1}{3}\cdot\dfrac{a^2}{4\sqrt{3}}\cdot\dfrac{a\sqrt{2}}{\sqrt{3}}=\dfrac{1}{3}\cdot\dfrac{a^3\sqrt{2}}{36}\)
Vậy ......
Ps : Viết sai SABC thành \(S_{ABC}\) ; SBC thành \(S_{BC}\) ;
SA \(\perp\) (ABC) thành \(S_{A\perp\left(ABC\right)}\) ; \(V_{SABC}\) thành \(V_{S_{ABC}}\) . Lần sau viết cho cẩn thận
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC,A'B'C' là tam giác đều cạnh a; AA'=6a; M,P lần lượt là trung điểm AA',CC' B'N=2BN.
Tính ((MNP),(ABC))
Dùng cos∝=\(\dfrac{S_{ABC}}{S_{MNP}}\)
Đề bài thiếu dữ liệu cạnh của 2 tam giác đáy
\(B'N=2BN\Rightarrow BN=\dfrac{1}{3}BB'=2a\)
Qua N lần lượt kẻ các đường thẳng song song AB và BC, chúng cắt AA' tại E và CC' tại F
\(\Rightarrow AE=BN=CF=2a\Rightarrow PF=ME=\dfrac{6a}{2}-2a=a\)
\(NF=NE=AB=BC=a\)
\(\Rightarrow MN=NP=\sqrt{a^2+a^2}=a\sqrt{2}\)
\(\Rightarrow S_{MNP}=\dfrac{a^2\sqrt{7}}{4}\) (công thức Herong, hoặc kẻ NH vuông góc MP và tính NH theo Pitago với tam giác MNP cân tại N)
\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)
Do MA, NB, PC vuông góc (ABC) \(\Rightarrow\) ABC là hình chiếu vuông góc của MNP lên (ABC)
\(\Rightarrow cos\alpha=\dfrac{S_{ABC}}{S_{MNP}}=\sqrt{\dfrac{3}{7}}\Rightarrow\alpha\)
Cho ΔABC vuông tại B, vẽ đường cao BH sao cho AH = 4cm, HC = 2cm.
a) tính BH
b) tính số đo góc A
c) chứng minh rằng \(S_{ABC}=\dfrac{BH^2}{2sinA.sinC}\)
a, Áp dụng HTL: \(BH=\sqrt{AH\cdot HC}=2\sqrt{2}\left(cm\right)\)
b, \(\tan A=\dfrac{BH}{AH}=\dfrac{\sqrt{2}}{2}\approx35^0\Leftrightarrow\widehat{A}\approx35^0\)
c, Áp dụng HTL: \(BH\cdot AC=AB\cdot BC\Leftrightarrow BH^2\cdot AC^2=AB^2\cdot BC^2\)
\(\dfrac{BH^2}{2\sin A\cdot\sin C}=BH^2\cdot\dfrac{1}{\dfrac{2BC\cdot AB}{AC^2}}=\dfrac{1}{2}\cdot\dfrac{BH^2\cdot AC^2}{BC\cdot AB}=\dfrac{1}{2}\cdot\dfrac{AB^2\cdot BC^2}{AB\cdot BC}=\dfrac{1}{2}AB\cdot BC=S_{ABC}\)
cho tam giác ABC đều cạnh a. Trên tia đối tia AB, CA, BC lần lượt lấy D, E, F sao cho AD = 1/2 AB, CE = 1/2 AC, BF = 1/2 BC.
a) Tính SABC
b) chứng minh tam giác DEF đều
c) TÍnh tỉ số của \(\frac{S_{DEF}}{S_{ABC}}\)
Câu a và câu b em làm được rồi, mong anh chị giúp em giải câu chi tiết câu c.
2. Cho tam giác ABC đều, cạnh a. Trên tia đối của tia AB, CA, BC lần lượt lấy D,E, F sao cho AD = 1/2 AB, CE = 1/2 AC, BF = 1/2 BC
a) TÍnh diện tích ABC
b) Chứng mình tam giác DEF đều
c) Tính tỉ số của \(\frac{S_{DEF}}{S_{ABC}}\)
Làm ơn giúp em giải chi tiết câu c) với
2. Cho tam giác ABC đều, cạnh a. Trên tia đối của tia AB, CA, BC lần lượt lấy D, E,F sao cho AD = \(\frac{1}{2}\)AB ; CE = \(\frac{1}{2}BC\); BF = \(\frac{1}{2}\)BC.
a) Tính diện tích ABC.
b) C/ m tam giác DEF đều
c) Tính tỉ số của \(\frac{S_{DEF}}{S_{ABC}}\)
2. Cho tam giác ABC đều, cạnh a. Trên tia đối của tia AB, CA, BC lần lượt lấy D, E, F sao cho AD = \(\frac{1}{2}\)AB , CE = \(\frac{1}{2}\)AC, BF = \(\frac{1}{2}\)BC.
a) Tính SABC
b) Chứng minh tam giác DEF đều
c) Tính tỉ số của \(\frac{S_{DEF}}{S_{ABC}}\)
a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2
Tính được AH theo định lý Pytago: AH = a3√2
=> Diện tích của tam giác ABC là: 12.a3√2.a=a23√4
b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều
c) Tam giác DEF và tam giác ABC đồng dạng
=> SDEF/SABC = (DE/AB)2
Cho ΔABC nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a/ C/m ΔAEF và ΔABC đồng dạng.
b/ Gọi I là giao điểm của AD và EF. C/m IH.AD = AI.HD.
c/ Cho AB = 10cm; AC = 17cm; BC = 21cm. Tính \(S_{\text{Δ}ABC}\).