Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tinni Chan
Xem chi tiết
Big City Boy
Xem chi tiết
Thu Thao
12 tháng 1 2021 lúc 22:12

\(\left(9x^2+12xy+4y^2\right)+\left(x^2+6x+9\right)+2017\)

\(=\left(3x+2y\right)^2+\left(x+3\right)^2+2017\ge2017\)

=> \(MinP=2017\Leftrightarrow\left\{{}\begin{matrix}2y=-3x\\x=-3\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=-3\\y=\dfrac{9}{2}\end{matrix}\right.\)

Dinh Thi Thuy Trang
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 11 2021 lúc 11:49

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

hoangtuvi
Xem chi tiết
homaunamkhanh
Xem chi tiết
goteks Son
25 tháng 3 2020 lúc 10:00

lập bảng xét dấu đi

Khách vãng lai đã xóa
Nguyễn Nhật Liên
Xem chi tiết
Trần Ái Linh
4 tháng 7 2021 lúc 21:54

`A=x^2+6x+y^2+4y+15`

`=(x^2+6x+9)+(y^2+4y+4)+2`

`=(x+3)^2+(y+2)^2+2`

Vì `(x+3)^2+(y+2)^2 >=0 forall x,y`

`=>A_(min)=2 <=> x=-3; y=-2`.

Nguyễn Lê Phước Thịnh
4 tháng 7 2021 lúc 22:14

Ta có: \(A=x^2+6x+y^2+4y+15\)

\(=x^2+6x+9+y^2+4y+4+2\)

\(=\left(x+3\right)^2+\left(y+2\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi (x,y)=(-3;-2)

Nguyễn Quỳnh Anh
Xem chi tiết
Nguyễn Quỳnh Anh
11 tháng 8 2018 lúc 12:17

giải nhanh đi nhé mik cần gấp ai lm đủ đúng hết mik k mun cho nha giải đủ các bước nhé cảm ưn các bạn trước giúp mik nha^.^><hihiii

Ngô Ngọc Hải
13 tháng 8 2018 lúc 19:37

1)  \(A=x^2+2x+3=\left(x+1\right)^2+2 \)

vi \(\left(x+1\right)^2\ge0\)(voi moi x)

    \(\Rightarrow\left(x+1\right)^2+2\ge2\)(voi moi x)

Vay GTNN cua A =2 khi x=-1

2)  Goi 2 so nguyen lien tiep do la x va x+1

TDTC x+1-x=1

Vi 1 la so le nen x+1-x la so le 

Vay .......

3) \(\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y-x-y\right)\left(x-y+x+y\right)\)

\(=-2y\cdot2x=-4xy\)(dpcm)

4) \(Q=-x^2+6x+1=-\left(x^2-6x-1\right)=-\left(x^2-6x+9-10\right)=-\left(x-3\right)^2+10\)

Vi \(\left(x-3\right)^2\ge0\)(voi moi x)

\(\Rightarrow-\left(x-3\right)^2\le0\)(voi moi x)

\(\Rightarrow-\left(x-3\right)^2+10\le10\)(voi moi x)

Vay GTLN cua Q=10 khi x=3

Bangtan Sonyeondan
Xem chi tiết
Lấp La Lấp Lánh
6 tháng 11 2021 lúc 14:46

\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=2\)

\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)

\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)

\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)

\(minC=-8\Leftrightarrow x=-1\)

\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)

\(maxD=-4\Leftrightarrow x=1\)

\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)

\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)

\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)

\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

phamducluong
Xem chi tiết