Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô nàng Thiên Yết
Xem chi tiết
Tran Le Khanh Linh
1 tháng 3 2020 lúc 20:44

\(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\left(x\ne\pm3;x\ne\pm1\right)\)

\(\Leftrightarrow x^4-5x^2+4=0\)

\(\Leftrightarrow x^4-4x^2-x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm1\left(ktm\right)\\x=\pm2\left(tm\right)\end{cases}}}\)

Vậy x=-2; x=2 

Khách vãng lai đã xóa
Trần Thị Mĩ Duyên
1 tháng 3 2020 lúc 20:50

\(Đkxđ:x^4-10x^2+9\ne0\Leftrightarrow\left(x^2-5\right)^2-16\ne0\)

\(\Leftrightarrow\left(x^2-5\right)^2\ne16\Leftrightarrow x\ne\pm1;\pm3\)

Với \(x\ne\pm1;\pm3\)Ta có"

\(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\Rightarrow x^4-5x^2+4=0\)

\(\Leftrightarrow\left(x^2-2\right)^2-x^2=0\)

\(\Leftrightarrow\left(x^2-2+x\right)\left(x^2-2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-2+x=0\\x^2-2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x^2+2\frac{1}{2}x+\frac{1}{4}\right)-\frac{9}{4}=0\\\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)-\frac{9}{4}=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x-\frac{1}{2}\right)^2=\frac{9}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\x=-2\end{cases}}\\\hept{\begin{cases}x=2\\x=-1\end{cases}}\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x-\frac{1}{2}\right)^2=\frac{9}{4}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\left(KTM\right)\\x=-2\left(TM\right)\end{cases}}\\\hept{\begin{cases}x=2\left(TM\right)\\x=-1\left(KTM\right)\end{cases}}\end{cases}}\)

Vậy \(x=\pm2\)

Khách vãng lai đã xóa
𝑳â𝒎 𝑵𝒉𝒊
2 tháng 3 2020 lúc 10:42

ĐKXĐ: \(x\ne\pm1,\pm3\)

\(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\)

\(\Leftrightarrow\frac{\left(x^2-2^2\right)\left(x^2-1^2\right)}{\left(x^2-3^2\right)\left(x^2-1\right)}=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)\left(x+1\right)\left(x-1\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

Khách vãng lai đã xóa
Ruminki
Xem chi tiết
Đặng Quỳnh Ngân
26 tháng 9 2016 lúc 9:48

đk để phân thức = 0 là tử số =0

x4 - 5x2 + 4 = (x2 -1)(x2 - 4) = 0

x = -1;1;-2;2

Đặng Quỳnh Ngân
26 tháng 9 2016 lúc 11:49

ồ quên, chỉ lấy 2 nghiệm x = -2;2

còn x = -1;1 (loại) vì làm mẫu = 0(vô nghĩa)

Lê Thụy Sĩ
Xem chi tiết
Trà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 22:40

Bài 1:

a: Để B có nghĩa thì \(x^4-10x^2+9< >0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+3\right)\left(x+1\right)< >0\)

hay \(x\notin\left\{3;1;-3;-1\right\}\)

b: \(B=0\) khi \(x^4-5x^2+4=0\)

=>(x-2)(x+2)=0

hay \(x\in\left\{2;-2\right\}\)

Song Tử
Xem chi tiết
Đinh Đức Hùng
8 tháng 8 2017 lúc 16:51

a) Để \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=0\) \(\Leftrightarrow x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3+1=0\\x+1=0\end{cases}\Rightarrow x=-1}\)

b) ĐKXĐ : \(x^4-10x^2+9\ne0\Leftrightarrow\left(x-9\right)\left(x-1\right)\left(x+1\right)\left(x+9\right)\ne0\)

\(\Rightarrow x\ne\left\{-9;-1;1;9\right\}\)

Để \(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\) \(\Leftrightarrow x^4-5x^2+4\ne0\)

\(\Leftrightarrow x^4-4x^2-x^2+4\ne0\)

\(\Leftrightarrow x^2\left(x^2-4\right)-\left(x^2-4\right)\ne0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow x=\left\{-2;2\right\}\)(TMĐKXĐ )

Ben 10
26 tháng 8 2017 lúc 20:24

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

Ben 10
26 tháng 8 2017 lúc 20:29

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

phan thi van anh
Xem chi tiết
Akai Haruma
24 tháng 8 2024 lúc 23:58

Lời giải:

a. ĐKXĐ: $x\neq \pm 1; \pm 3$

$A=\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{(x-1)(x+1)(x-2)(x+2)}{(x-1)(x+1)(x-3)(x+3)}$

$=\frac{(x-2)(x+2)}{(x-3)(x+3)}=\frac{x^2-4}{x^2-9}$
b.

Để $A=0$ thì $x^2-4=0$

$\Leftrightarrow (x-2)(x+2)=0$

$\Leftrightarrow x=\pm 2$ (thỏa mãn) 

c.

$|2x-1|=7$

$\Rightarrow 2x-1=7$ hoặc $2x-1=-7$

$\Rightarrow x=4$ hoặc $x=-3$.

Mà $x\neq \pm 1; \pm 3$ nên $x=4$

Khi đó:

$A=\frac{4^2-4}{4^2-9}=\frac{12}{7}$

Sách Giáo Khoa
Xem chi tiết
Tuyết Nhi Melody
21 tháng 4 2017 lúc 11:57

Điều kiện cuả biến:

x2−5x=x(x−5)≠0;x−5≠0 hay x≠0;x≠5

Do đó điều kiện của biến là x≠0;x≠5

Rút gọn phân thức:

x2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

Phân thức có giá trị bằng 0 khi x−5x=0

Hay x−5=0vàx≠0 hay x = 5

Nhưng x = 5 không thỏa mãn điều kiện của biến. Vậy không có giá trị nào của x để giá trị của phân thức thức 0.

Yaden Yuki
Xem chi tiết
Hoàng Lê Bảo Ngọc
12 tháng 7 2016 lúc 15:42

\(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}\)(ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\))

Để phân thức có giá trị bằng 0 thì (x-5)2 = 0 <=> x = 5 (loại vì không thoả mãn ĐKXĐ)

Vậy không có giá trị nào của x thoả mãn đề bài.

Nguyễn Hải Ngọc
Xem chi tiết
Hero Chibi
9 tháng 12 2017 lúc 19:58

ĐKXĐ: \(x^2-5x\ne0\)

\(\Leftrightarrow x\left(x-5\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)

Ta có: \(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}=\frac{x-5}{x}\)

Để \(\frac{x-5}{x}=0\Leftrightarrow x=5\)( Điều kiện không thỏa mãn )

Vậy không có giá trị nào của x để \(\frac{x^2-10x+25}{x^2-5x}=0\)

b) Để giá trị của phân thức trên bằng \(\frac{5}{2}\Leftrightarrow\frac{x-5}{x}=\frac{5}{2}\)

\(\Leftrightarrow\left(x-5\right).2=5x\)

\(\Leftrightarrow2x-10=5x\)

\(\Leftrightarrow3x=-10\)

\(\Leftrightarrow x=-\frac{10}{3}\)