Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thị Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2023 lúc 0:35

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

b; góc ACK=1/2*sđ cung AK=90 độ

Xét ΔACK vuông tại C và ΔADB vuông tại D có

góc AKC=góc ABD

=>ΔACK đồng dạng với ΔADB

=>AC/AD=AK/AB

=>AC*AB=AD*AK

lâm gia lạc
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2022 lúc 11:36

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: AH vuông góc với BC tại D

b:

Xét tứ giác CDFA có góc CDA=góc CFA=90 độ

nên CDFA là tứ giác nội tiếp

=>góc BFD=góc BCA

Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

=>góc AFE=góc ACB

Ta có: góc COE=180 độ-2 góc C

góc EFD=180 độ-góc AFE-góc BFD

=180 độ-2 góc C

=>góc COE=góc EFD

=>DOEF là tứ giác nội tiếp

Vũ Thị Hương
Xem chi tiết
Thanh Hoàng Thanh
29 tháng 3 2022 lúc 21:48

undefined

Hoàng Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2021 lúc 21:47

Sửa đề: BF và CE cắt nhau tại H

a) Xét (O) có 

ΔBEC nội tiếp đường tròn(B,E,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

\(\Leftrightarrow CE\perp BE\)

\(\Leftrightarrow CE\perp AB\)

\(\Leftrightarrow\widehat{AEC}=90^0\)

hay \(\widehat{AEH}=90^0\)

Xét (O) có 

ΔBFC nội tiếp đường tròn(B,F,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBFC vuông tại F(Định lí)

\(\Leftrightarrow BF\perp CF\)

\(\Leftrightarrow BF\perp AC\)

\(\Leftrightarrow\widehat{AFB}=90^0\)

hay \(\widehat{AFH}=90^0\)

Xét tứ giác AEHF có 

\(\widehat{AEH}\) và \(\widehat{AFH}\) là hai góc đối

\(\widehat{AEH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét ΔABC có 

BF là đường cao ứng với cạnh AC(cmt)

CE là đường cao ứng với cạnh AB(cmt)

BF cắt CE tại H(gt)

Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)

\(\Leftrightarrow AH\perp BC\)

hay \(AD\perp BC\)(đpcm)

M Quan
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2023 lúc 8:36

a: Xet (O) có

ΔACD nội tiếp

AD là đường kính

=>ΔACD vuông tại C

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

góc ADC=góc ABH

=>ΔACD đồng dạng với ΔAHB

=>AC/AH=AD/AB và góc CAD=góc HAB

=>AC*AB=AD*AH và góc CAH=góc BAD

b: Xét tứ giác ABHE có

góc AHB=góc AEB=90 độ

=>ABHE là tứ giác nội tiếp

=>góc AHE=góc ABE

=>góc AHE+góc HAC=90 độ

=>HE vuông góc AC

Xét tứ giác AHFC có

góc AHC=góc AFC=90 độ

=>AHFC là tứ giác nội tiếp

=>góc HFA=góc HCA

=>góc HFA+góc BAD=90 độ

=>HF vuông góc AB

VõThị Quỳnh Giang _
Xem chi tiết

ối chồi em mới lớp 7 thôi

Khách vãng lai đã xóa
ekhoavvdd
Xem chi tiết
ekhoavvdd
14 tháng 3 2021 lúc 14:46

ai đó làm giúp với

 

dilan
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2022 lúc 11:36

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: AH vuông góc với BC tại D

b:

Xét tứ giác CDFA có góc CDA=góc CFA=90 độ

nên CDFA là tứ giác nội tiếp

=>góc BFD=góc BCA

Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

=>góc AFE=góc ACB

Ta có: góc COE=180 độ-2 góc C

góc EFD=180 độ-góc AFE-góc BFD

=180 độ-2 góc C

=>góc COE=góc EFD

=>DOEF là tứ giác nội tiếp

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 9 2019 lúc 7:20

HS tự làm

Lê Hiền Trang
22 tháng 3 2021 lúc 15:26

a) Xét (O,R)(O,R) đường kính BCBC có

ˆBFC=ˆBEC=90oBFC^=BEC^=90o (góc nội tiếp chắn nửa đường tròn)

⇒ˆAFH=ˆAEH=90o⇒AFH^=AEH^=90o

Tứ giác AFHEAFHE có ˆAFH+ˆAEH=180oAFH^+AEH^=180o

⇒AEFH⇒AEFH thuộc đường tròn đường kính (AH)(AH)

Tâm II là trung điểm của AHAH.

b) Xét ΔAHEΔAHE và ΔBHDΔBHD có:

 ˆAEH=ˆBDH=90oAEH^=BDH^=90o

ˆAHE=ˆBHDAHE^=BHD^ (đối đỉnh)

⇒ΔAHE∼ΔBHD⇒ΔAHE∼ΔBHD (g-g)

⇒HEHD=HAHB⇒HEHD=HAHB (hai cạnh tương ứng tỉ lệ) 

Mà HA=2HIHA=2HI

⇒HE.HB=2HD.HI⇒HE.HB=2HD.HI

c) Tứ giác AEHFAEHF nội tiếp đường tròn đường kính (AH)(AH) chứng minh câu a

⇒IE=IH=R⇒ΔIEH⇒IE=IH=R⇒ΔIEH cân đỉnh II

⇒ˆIEH=ˆIHE⇒IEH^=IHE^

ˆIHE=ˆBHDIHE^=BHD^ (đối đỉnh)

Từ hai điều trên ⇒ˆIEH=ˆBHD⇒IEH^=BHD^

ˆHEO=ˆHBDHEO^=HBD^ (do ΔOEBΔOEB cân đỉnh O)

⇒ˆIEO=ˆIEH+ˆHEO=ˆBHD+ˆHBD=90o⇒IEO^=IEH^+HEO^=BHD^+HBD^=90o (do ΔDHB⊥DΔDHB⊥D)

⇒IE⊥EO⇒IE⇒IE⊥EO⇒IE là tiếp tuyến của (O)(O).

Chứng minh tương tự

ˆIFH=ˆIHF=ˆDHCIFH^=IHF^=DHC^

ˆHFO=ˆOCHHFO^=OCH^

⇒ˆIFO=ˆDHC+ˆOCH=90o⇒IFO^=DHC^+OCH^=90o

⇒IF⊥FO⇒IF⇒IF⊥FO⇒IF là tiếp tuyến của (O)(O)

image

Khách vãng lai đã xóa