Những câu hỏi liên quan
nguyễn công huy
Xem chi tiết
Xem chi tiết
My Nguyễn
Xem chi tiết
Phạm Nhật Trúc
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2021 lúc 20:44

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\sqrt{2}}{2}\Rightarrow sinA=\sqrt{1-cos^2A}=\dfrac{\sqrt{2}}{2}\)

\(\dfrac{a}{sinA}=2R\Rightarrow R=\dfrac{a}{2sinA}=\sqrt{2}\)

Bình luận (0)
Trịnh Hoang Anh
Xem chi tiết
Nguyễn Anh Duy
19 tháng 7 2020 lúc 20:48

cho a,b,c là 3 số thực thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c) Khó quá mọi người oi

Bình luận (0)
Nguyễn Tuấn Anh
Xem chi tiết
Trí Tiên亗
6 tháng 8 2020 lúc 10:06

Áp dụng bất đẳng thức Cosi, ta có:

\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:

\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)

Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:

\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)

\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)

\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)

\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)

\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

Bình luận (0)
 Khách vãng lai đã xóa
Trí Tiên亗
6 tháng 8 2020 lúc 10:07

sửa đề thành \(a^2+b^2+c^2=3\) nhé

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Văn Kiên
Xem chi tiết
Kiệt Nguyễn
20 tháng 8 2020 lúc 15:50

Bất đẳng thức cần chứng minh tương đương với\(\Sigma_{cyc}\left(\sqrt{5a^2+4bc}-2\sqrt{bc}\right)\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

Hay \(\Sigma_{cyc}\frac{5a^2}{\sqrt{5a^2+4bc}+2\sqrt{bc}}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)\(\Leftrightarrow\frac{1}{\sqrt{3\left(a^2+b^2+c^2\right)}}\left(\Sigma_{cyc}\frac{5a^2}{\sqrt{5a^2+4bc}+2\sqrt{bc}}\right)\ge1\)

Áp dụng bất đẳng thức Cauchy ta có \(2\sqrt{5a^2+4bc}\sqrt{3\left(a^2+b^2+c^2\right)}\le8a^2+3b^2+3c^2+4bc\)\(4\sqrt{bc}\sqrt{3\left(a^2+b^2+c^2\right)}=\frac{4.3\sqrt{bc}.\sqrt{3\left(a^2+b^2+c^2\right)}}{3}\)\(\le\frac{2\left(3a^2+3b^2+3c^2+9bc\right)}{3}=2\left(a^2+b^2+c^2+3bc\right)\)

Cộng theo vế hai bất đẳng thức trên ta được \(2\left(\sqrt{5a^2+4bc}+2\sqrt{bc}\right)\sqrt{3\left(a^2+b^2+c^2\right)}\)\(\le10a^2+5b^2+5c^2+10bc\)

Suy ra \(\frac{10a^2}{2\left(\sqrt{5a^2+4bc}+2\sqrt{bc}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\)\(\ge\frac{10a^2}{10a^2+5b^2+5c^2+10bc}\)

Lại có \(10bc\le5b^2+5c^2\)nên \(\frac{10a^2}{10a^2+5b^2+5c^2+10bc}\ge\frac{10a^2}{10a^2+10b^2+10c^2}=\frac{a^2}{a^2+b^2+c^2}\)

Do đó ta được \(\frac{5a^2}{\left(\sqrt{5a^2+4bc}+2\sqrt{bc}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\ge\frac{a^2}{a^2+b^2+c^2}\)(1)

Hoàn toàn tương tự, ta được: \(\frac{5b^2}{\left(\sqrt{5b^2+4ca}+2\sqrt{ca}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\ge\frac{b^2}{a^2+b^2+c^2}\)(2) ; \(\frac{5c^2}{\left(\sqrt{5c^2+4ab}+2\sqrt{ab}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\ge\frac{c^2}{a^2+b^2+c^2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{1}{\sqrt{3\left(a^2+b^2+c^2\right)}}\left(\Sigma_{cyc}\frac{5a^2}{\sqrt{5a^2+4bc}+2\sqrt{bc}}\right)\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c 

Bình luận (0)
 Khách vãng lai đã xóa
Đàm Thảo Anh
Xem chi tiết
Lightning Farron
1 tháng 11 2016 lúc 22:22

áp dụng Bđt bunhiacopski nhé

 

Bình luận (3)
Lightning Farron
1 tháng 11 2016 lúc 22:41

đề xem lại VT

Bình luận (3)
Lightning Farron
2 tháng 11 2016 lúc 11:22

đề đúng

\(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)

Bình luận (0)
Bình
Xem chi tiết