Giả sử a,b là hai số thực phân biệt thỏa mãn: a2 + 3a = b2 + 3b = 2.
Chứng minh: a3 + b3 = -45.
cho a,b là 2 số thực phân biệt thỏa mãn a2-3a=b2-3b=1. Tính giá trị của:
a+b ; a2+b2 ; a3+b3 ; a4+b4 ; a5+b5 ; a6+b6
Cho a, b là 2 số thực phân biệt thỏa mãn a2+4a=b2+4b=1. CMR
a, a+b=-4
b,a3+b3=-76
c, a4+b4=322
a: \(a^2+4a=b^2+4b+1\)
=>\(a^2+4a-b^2-4b=0\)
=>(a-b)(a+b)+4(a-b)=0
=>(a-b)(a+b+4)=0
mà a-b<>0
nên a+b+4=0
=>a+b=-4
b: Đặt \(X=a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-4\right)^3-3ab\cdot\left(-4\right)=-64+12ab\)
\(a^2+4a=1\)
=>\(a^2+4a-1=0\)
=>\(a^2+4a+4-5=0\)
=>\(\left(a+2\right)^2=5\)
=>\(\left[\begin{array}{l}a+2=\sqrt5\\ a+2=-\sqrt5\end{array}\right.\Rightarrow\left[\begin{array}{l}a=\sqrt5-2\\ a=-\sqrt5-2\end{array}\right.\)
\(b^2+4b=1\)
=>\(b^2+4b-1=0\)
=>\(b^2+4b+4-5=0\)
=>\(\left(b+2\right)^2=5\)
=>\(\left[\begin{array}{l}b+2=\sqrt5\\ b+2=-\sqrt5\end{array}\right.\Rightarrow\left[\begin{array}{l}b=\sqrt5-2\\ b=-\sqrt5-2\end{array}\right.\)
Vì a<>b nên sẽ có hai trường hợp sau:
TH1: \(a=\sqrt5-2;b=-\sqrt5-2\)
=>\(ab=\left(\sqrt5-2\right)\left(-\sqrt5-2\right)=-\left(\sqrt5-2\right)\left(\sqrt5+2\right)=-1\)
X=-64+12ab
=-64-12
=-76
TH2: \(a=-\sqrt5-2;b=\sqrt5-2\)
=>\(ab=\left(\sqrt5-2\right)\left(-\sqrt5-2\right)=-\left(\sqrt5-2\right)\left(\sqrt5+2\right)=-1\)
X=-64+12ab
=-64-12
=-76
Vậy: X=-76
c: Đặt \(Y=a^4+b^4\)
\(=\left(a^2+b^2\right)^2-2a^2b^2\)
\(=\left\lbrack\left(a+b\right)^2-2ab\right\rbrack^2-2\cdot\left(ab\right)^2\)
\(=\left\lbrack\left(-4\right)^2-2\cdot\left(-1\right)\right\rbrack^2-2\cdot\left(-1\right)^2=\left\lbrack16+2\right\rbrack^2-2\)
\(=18^2-2\)
=324-2
=322
giả sử a,b là 2 số thực phân biệt thỏa mãn : a^2+3a=b^2+3b=2
CMR : a. a+b=-3
b.a^3+b^3=-45
a) Ta có : a^2+3a=b^2+3b \(\Leftrightarrow\)(a^2 - b^2) + 3(a - b) = 0 \(\Leftrightarrow\)(a - b)(a+b+3)=0 \(\Leftrightarrow\)a+b+3=0 (vì a,b phan biet nen a - b \(\ne\)0)
\(\Leftrightarrow\)a+b=-3 (đpcm)
b) Ta có : a^2 +2ab +b^2 =9 (vì a+b=-3) (1)
Vì a^2+3a=b^2+3b=2 \(\Rightarrow\)a^2+b^2+3(a+b)=4 \(\Rightarrow\)a^2+b^2=13 (2)Lấy (1) trừ (2) suy ra : 2ab=-4 \(\Leftrightarrow\)-ab=2 (3)
Lấy (2) cộng (3) suy ra : a^2-ab+b^2=15
Do đó : a^3+b^3=(a+b)(a^2-ab+b^2)=(-3)*15=-45(đpcm)
giả sử a,b là 2 số thực phân biệt thỏa mãn \(a^2+3a=b^2+3b=2\)
CMR :
a. a+b=-3
b. a^3 +b^3 =-45
Thực hiện nhanh các phép chia:
a) ( a 2 - 6ab + 9 b 2 ) : (a - 3b);
b) ( a 3 -9 a 2 b + 27a b 2 - 27 b 3 ) : ( 3 b - a ) 2 .
a) Phân tích a 2 – 6ab + 9 b 2 = ( a – 3 b ) 2 ; thực hiện phép chia được kết quả a – 3b.
b) Phân tích a 3 + 9 a 2 b + 27a b 2 – 27 b 3 = ( a – 3 b ) 3 ; thực hiện phép chia được kết quả a – 3b.
cho a,b,c là 3 số dương thỏa mãn: a+b+c=2019. Tìm GTNN : a3/a2+b2+ab + b3/b2+c2+bc + c3/c2+a2+ca
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
Cho hai số thực dương a và b thỏa mãn a + b ≤ 2.
Chứng minh a2/a2 + b2/b2 + a ≤ 1
Sửa đề : \(\dfrac{a^2}{a^2+b}+\dfrac{b^2}{b^2+a}\le1\\ \) (*)
\(< =>\dfrac{a^2\left(b^2+a\right)+b^2\left(a^2+b\right)}{\left(a^2+b\right)\left(b^2+a\right)}\le1\\ < =>a^2b^2+a^3+b^2a^2+b^3\le\left(a^2+b\right)\left(b^2+a\right)\) ( Nhân cả 2 vế cho `(a^{2}+b)(b^{2}+a)>0` )
\(< =>a^3+b^3+2a^2b^2\le a^2b^2+b^3+a^3+ab\\ < =>a^2b^2\le ab\\ < =>ab\le1\) ( Chia 2 vế cho `ab>0` )
Do a,b >0
Nên áp dụng BDT Cô Si :
\(2\ge a+b\ge2\sqrt{ab}< =>\sqrt{ab}\le1\\ < =>ab\le1\)
Do đó (*) luôn đúng
Vậy ta chứng minh đc bài toán
Dấu "=" xảy ra khi : \(a=b>0,a+b=2< =>a=b=1\)
a Sửa đề : Chứng minh \(\dfrac{a^2}{a^2+b}\)+\(\dfrac{b^2}{b^2+a}\)\(\le\) 1 ( Đề thi vào 10 Hà Nội).
Bất đẳng thức trên tương đương :
\(\dfrac{a^2+b-b}{a^2+b}\)+\(\dfrac{b^2+a-a}{b^2+a}\)\(\le\)1
\(\Leftrightarrow\) 1 - \(\dfrac{b}{a^2+b}\)+ 1 - \(\dfrac{a}{b^2+a}\)\(\le\)1
\(\Leftrightarrow\)1 - \(\dfrac{b}{a^2+b}\) - \(\dfrac{a}{b^2+a}\)\(\le\)0
\(\Leftrightarrow\)- \(\dfrac{b}{a^2+b}\)- \(\dfrac{a}{b^2+a}\)\(\le\)-1
\(\Leftrightarrow\)\(\dfrac{a}{b^2+a}\)+ \(\dfrac{b}{a^2+b}\)\(\ge\)1
Xét VT = \(\dfrac{a^2}{ab^2+a^2}\)+ \(\dfrac{b^2}{a^2b+b^2}\)\(\ge\)\(\dfrac{\left(a+b\right)^2}{ab^2+a^2+a^2b+b^2}\) (Cauchy - Schwarz)
= \(\dfrac{\left(a+b\right)^2}{ab\left(b+a\right)+a^2+b^2}\)
\(\ge\)\(\dfrac{\left(a+b\right)^2}{2ab+a^2+b^2}\)
= \(\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}\)= 1
Vậy BĐT được chứng minh
Dấu '=' xảy ra \(\Leftrightarrow\)a = b = 1
cho a,b là các số thực thỏa mãn a2+b2=a+b+ab. Tìm Max của M = a3+b3+2000
Ai nhanh mk Tick và kb nha ^^ , Poi !~
chứng minh :
a3 +b3 =(a+b).(a2 -ab +b2)
a3 -b3 =(a-b).(a2 +ab +b2)
VP `=(a+b)(a^2-ab+b^2)`
`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`
`=a^3+b^3`
.
VP `=(a-b)(a^2+ab+b^2)`
`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`
`=a^3-b^3`
Ta có: \(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Ta có: \(a^3-b^3\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2-2ab+b^2+3ab\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\)