Với a,b,c thuộc R thỏa mãn : \(\left(3a+3b+3c\right)^3=24+\left(3a+b-c\right)^3+\left(3b+c-a\right)^3+\left(3c+a-b\right)^3\)
CMR : (a+2b)(b+2c)(c+2a)=1
cho a^2-b^2=4c^2 .CMR:
(5a-3b+8c)(5a-3b-8c)=(3a-5b)^2
GIẢI NHANH GIÚP NHA CẦN GẤP
Cho a;b;c bất kì thỏa mãn ab +bc +ca =5
Tìm giá trị nhỏ nhất của biểu thức :M = 3a2 +3b2+c2
Phân tích đa thức thành nhân tử
A, 3a^2c^2+bd+3abc+acd
B, a^2c-a^2.d-b^2.d+b^2.c
C, 8x^2+4xy-2ax-ay
D, x^2-y^2-2xy-y^2
E, 3a^2-6ab+3b^2-12c^2
Giup mk nha do j mk can on trc :3
Phân tích đa thức sau thành nhân từ
a) 3ab(x+y)-6ab(y+x)
b)7a(x-3)+a2(x2-9)
c)34(x+y)-x-y
d)25x4-942
e)(5a-b)2-(2a+3b)2
k)22-3a-b2+3b
a) Tìm a , b ,c biết a - 1 ; b - 2 ; c - 3 TL với 2 , 3 ,4 và 2a + 3b - c = 50
b) Tìm a , b ,c biết a - 1 ; b - 2 ; c - 3 TLN với 2 , 3 ,4 và 2a + 3b - c = 50
Cho a>b hãy chứng minh
A) 3a+5>3b+2
B) 2-4a<3-4b
Giải giùm nha mk cần gấp lắm ấy
Cho a,b,c>0. Chứng minh: \(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{a+b+c}{4}\)
Cho mình hỏi các hằng đẳng thức này có tên là gì vậy:
a, (a+b+c)^3 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
b, (a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
c, (a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5