Cho a, b ,c duong.Cmr \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)
cho a,b,c >0 chứng minh rằng \(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}>=2\left(\sqrt{\frac{c}{a+b}}+\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}\right)\)
Cho a, b, c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\).
Chứng minh rằng \(\frac{a+b}{\sqrt{a}+\sqrt{b}}+\frac{b+c}{\sqrt{b}+\sqrt{c}}+\frac{c+a}{\sqrt{c}+\sqrt{a}}\le4\left(\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\frac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\frac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right)\)
Áp dụng BĐT Bunyakovsky dạng cộng mẫu:
\(\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\frac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}\ge\frac{\left(\sqrt{a}+\sqrt{b}-2\right)^2}{\sqrt{b}+\sqrt{c}}\)
\(=\frac{\left(-\sqrt{c}\right)^2}{\sqrt{b}+\sqrt{c}}=\frac{c}{\sqrt{b}+\sqrt{c}}\)
Tương tự CM được: \(4\left[\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\frac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\frac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right]\ge2\left(\frac{a}{\sqrt{c}+\sqrt{a}}+\frac{b}{\sqrt{a}+\sqrt{b}}+\frac{c}{\sqrt{b}+\sqrt{c}}\right)\) (1)
Lại có: \(VP\left(1\right)-\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}+\frac{b+c}{\sqrt{b}+\sqrt{c}}+\frac{c+a}{\sqrt{c}+\sqrt{a}}\right)=...=0\) (biến đổi đồng nhất)
=> \(VT\left(1\right)\ge\frac{a+b}{\sqrt{a}+\sqrt{b}}+\frac{b+c}{\sqrt{b}+\sqrt{c}}+\frac{c+a}{\sqrt{c}+\sqrt{a}}\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{4}{9}\)
cho a,b,c \(\varepsilon\ R^+\)\(.CMR\ :\ \frac{\sqrt{a^2+b^2}}{c}+\frac{\sqrt{b^2+c^2}}{a}+\frac{\sqrt{c^2+a^2}}{b}\ge2\left(\frac{a}{\sqrt{b^2+c^2}}+\frac{b}{\sqrt{c^2+a^2}}+\frac{c}{\sqrt{a^2+b^2}}\right)\)
CHo ba số a , b , c không âm đôi một khác nhau . Chứng minh rằng :
\(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}.\frac{\sqrt{b}+\sqrt{c}}{\sqrt{b}-\sqrt{c}}.+\frac{\sqrt{b}+\sqrt{c}}{\sqrt{b}-\sqrt{c}}.\frac{\sqrt{c}+\sqrt{a}}{\sqrt{c}-\sqrt{a}}+\frac{\sqrt{c}+\sqrt{a}}{\sqrt{c}-\sqrt{a}}.\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=-1\) .
Cho các số dương a,b,c. Chứng minh
\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{c+a}{ac}}\)
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}\le\sqrt{2\left(\frac{2}{a}+\frac{2}{b}\right)}=2\sqrt{\frac{a+b}{ab}}\)
Tương tự: \(\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le2\sqrt{\frac{b+c}{bc}}\) ; \(\sqrt{\frac{2}{c}}+\sqrt{\frac{2}{a}}\le2\sqrt{\frac{c+a}{ca}}\)
Cộng vế với vế ta sẽ có điều phải chứng minh
Cho a,b,c là các số dương, Cm:
\(\frac{1}{\sqrt{a}+3\sqrt{b}}+\frac{1}{\sqrt{b}+3\sqrt{c}}+\frac{1}{\sqrt{c}+3\sqrt{a}}\ge\frac{1}{\sqrt{a}+2\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{b}+2\sqrt{c}+\sqrt{a}}+\frac{1}{\sqrt{c}+2\sqrt{a}+\sqrt{b}}\)
Giúp Mình Với các bạn ơi !!!!!
Chứng minh gì vậy bạn
Câu 1: Cho 2 số dương a,b,c. Chứng minh rằng:\( \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\sqrt\frac{a}{b+c}+\sqrt\frac{b}{c+a}+\sqrt\frac{c}{a+b}\)
\(VT=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)
\(VT< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\)
\(VP=\dfrac{a}{\sqrt{a\left(b+c\right)}}+\dfrac{b}{\sqrt{b\left(c+a\right)}}+\dfrac{c}{\sqrt{c\left(a+b\right)}}\)
\(VP\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=2\)
\(\Rightarrow VP>VT\) (đpcm)
Cho a,b,c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
\(VT\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)
Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2019}\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\) \(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)
\(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\)
\(2\sqrt{2}VT\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)
\(2\sqrt{2}VT\ge\dfrac{4\left(x+y+z\right)^2}{2x+2y+2z}-\left(x+y+z\right)=x+y+z=\sqrt{2019}\)
\(\Rightarrow VT\ge\dfrac{\sqrt{2019}}{2\sqrt{2}}=\sqrt{\dfrac{2019}{8}}\) (đpcm)
Cho a,b,c>0
CMR:
\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}\sqrt{\frac{c+a}{ca}}\)
các bạn giúp mình nha càng nhanh càng tốt