Giải họ mik bài này với mn:
\(\frac{2015+2016\cdot2017}{2017\cdot2018-2019}\)
\(\frac{2015\cdot2017}{2016\cdot2018}va\frac{2016\cdot2017}{2014\cdot2015}\)
Tính giá trị biểu thức \(P=\frac{\left(2016^2\cdot2026+31\cdot2017-1\right)\left(2016\cdot2021+4\right)}{2017\cdot2018\cdot2019\cdot2020\cdot2021}\)
Chứng minh \(\frac{A}{B}\) là số nguyên với :
\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}+\frac{1}{2017\cdot2018}\)
\(B=\frac{1}{1010\cdot2018}+\frac{1}{1011\cdot2017}+...+\frac{1}{2018\cdot1010}\)
Bạn đưa lên câu hỏi online ở đâu vậy dạy mình cách với ạ bạn
tính :P=\(\dfrac{\left(2016^2\cdot2026+31\cdot2017-1\right)\left(2016\cdot2021+4\right)}{2017\cdot2018\cdot2019\cdot2020\cdot2021}\)
Đặt \(2016=a\) biểu thức trên trở thành:
\(P=\dfrac{\left(a^2\left(a+10\right)+31\left(a+1\right)-1\right)\left(a\left(a+5\right)+4\right)}{\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)}=\dfrac{A}{B}\)
Với \(B=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)\)
Ta có: \(a^2\left(a+10\right)+31\left(a+1\right)-1=a^3+10a^2+31a+30\)
\(=a^3+5a^2+6a+5a^2+25a+30=a\left(a^2+5a+6\right)+5\left(a^2+5a+6\right)\)
\(=\left(a+5\right)\left(a^2+5a+6\right)=\left(a+5\right)\left(a^2+2a+3a+6\right)\)
\(=\left(a+5\right)\left(a+2\right)\left(a+3\right)\)
Và \(a\left(a+5\right)+4=a^2+5a+4=a^2+a+4a+4=\left(a+1\right)\left(a+4\right)\)
\(\Rightarrow A=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)=B\)
\(\Rightarrow P=\dfrac{A}{B}=1\)
Cho:
\(\frac{x_1-1}{2017}=\frac{x_2-2}{2016}=\frac{x_3-3}{2015}=...=\frac{x_{2017}-2017}{1}vàx_1+x_2+...+x_{2017=2017\cdot2018.}Tìmx_1,x_2,x_{3,...,x_{2017}?}\)
So sánh \(\dfrac{2016\cdot2018}{1999+2016\cdot2017}\) với 1
Giải.
Ta có : \(\dfrac{2016.2018}{1999+2016.2017}=\dfrac{2016\left(2017+1\right)}{1999+2016.2017}\)
\(=\dfrac{2016.2017+2016}{1999+2016.2017}\)
Do \(2016>1999\)
\(\Rightarrow2016.2017+2016>1999+2016.2017\)
\(\dfrac{2016.2017+2016}{1999+2016.2017}>1\)
Vậy...
tik mik nha !!!
Ta có:
\(\dfrac{2016.2018}{1999+2016.2017}\)= \(\dfrac{2016\left(1+2017\right)}{1999+2016.2017}\)= \(\dfrac{2016+2016.2017}{1999+2016.2017}\)
Vì \(2016>1999\) nên \(2016+2016.2017>1999+2016.2017\)
Do đó, \(\dfrac{2016+2016.2017}{1999+2016.2017}\) > 1
Vậy \(\dfrac{2016.2018}{1999+2016.2017}\) > 1
ai giúp minh giải bài này với ạ:
A=2015/2016+2016/2017+2017/2018+2018/2015
hãy chứng minh rằng A>4
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)
\(=\frac{2016-1}{2016}+\frac{2017-1}{2017}+\frac{2018-1}{2018}+\frac{2015+3}{2015}\)
\(=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{3}{2015}\)
\(=4+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2015}-\frac{1}{2018}\)
mà \(\frac{1}{2015}>\frac{1}{2016};\frac{1}{2017};\frac{1}{2018}\)
\(\Rightarrow A>4\)
ĐỀ BÀI TOÁN LỚP 8
BÀI 1: Thu gọn đa thức sau:
F= \(\left(x-1\right)^3-x^2\left(x-3\right)\)
BÀI 2: Tìm x:
a) \(\left(x+3\right)^2=\left(x-2\right)\left(x+4\right)\)
b) \(\left(x+4\right)^2=2x^2+16\)
BÀI 3: Tính nhanh
\(A=2019\cdot2014-2016\cdot2017\)
\(B=2018^2-2016^2-4\cdot2016\)
\(C=2017\cdot2018-2016\cdot2019\)
Bài 1:
F=(x-1)3-x2(x-3)
=x3-3x2+3x-1-x3-3x2
=(x3-x3)-(3x2-3x2)+3x-1
=3x-1
Bài 2:
a)(x+3)2=(x-2)(x+4)
<=>x2+6x+9=x2+2x-8
<=>4x=-17
<=>x=-17/4
b)(x+4)2=2x2+16
<=>x2+8x+16=2x2+16
<=>8x=x2
<=>8x-x2=0
<=>x(8-x)=0
<=>x=0 hoặc x=8
Bài 1:
F=(x-1)3-x2(x-3)=x3-3x2+3x-1-x3+3x2=3x-1
Bài 2:
a, <=>(x+3)2-(x-2)(x-4)=0
<=>x^2+6x+9-x^2-4x+2x+8=0
<=>4x+17=0
<=>x=-4,25
b,<=>(x+4)2-2x2-16=0
<=>x2+8x+16-2x2-16=0
<=>8x-x2=0
<=>x(8-x)=0
<=>\(\orbr{\begin{cases}x=0\\x=8\end{cases}}\)
Bài 3:(đợi một xíu)
Cho :
\(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(Q=\frac{1}{2019}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}+\frac{1}{2017}\)
TÍNH P VÀ Q
GIÚP MIK VỚI Ạ ~~