tìm x , y , z biết x^2 - xy + y^3 = 3 và z^2 + yz + 1 =0
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)
tìm GTNN của x+y+z/xy+yz+xz biết (x-y)2=1/3, (y-z)2=1/4,(z-x)2=1/5 (0<x,y,z<1)
thêm x2 + y2 + z2 = 1 nha
HT nha vinh
Tìm x, y, z biết: \(\hept{\begin{cases}x^2-xy+y^3=3\\z^2+yz+1=0\end{cases}}\)
cho x,y,z>0 và x+y+z=\(\dfrac{3}{2}\)
tìm Min \(P=\dfrac{\sqrt{x^2+xy+y^2}}{\left(x+y\right)^2+1}+\dfrac{\sqrt{y^2+yz+z^2}}{\left(y+z\right)^2+1}+\dfrac{\sqrt{z^2+zx+x^2}}{\left(z+x\right)^2+1}\)
Đề bài sai, biểu thức này ko có min
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}>=3 \)
biết x,y,z>0 và x+y+z=xy+xz+yz=6xyz
Câu hỏi của Minh Hà Tuấn - Toán lớp 9 - Học toán với OnlineMath
Tìm x,y,z biết
x-1/2=y-2/3=z-3/4 và x-2y+3z=14
x+2=1/2;y+z-1/3;z+x-1/4
xy=2;xz=8;yz-12
Cho x,y,z>0 thỏa mãn xy+yz+zx=1. Chứng minh \(\frac{x}{x^2-yz+3}+\frac{y}{y^2-zx+3}+\frac{z}{z^2-xy+3}\ge\frac{1}{x+y+z}\)
Cho x+y-z=0 và xy+yz-xz=0.tính s=(x-z-2)^3+1/7(x+y-7)^3-4/9(y+z-3/2)^4
Bai1:
1) Tìm x;y;z biết; (xy+1)/9=(xz+2)/15=(yz+3)/27 và xy+xz+yz=11
2) Biết (bz-cy)/a= (cx-az)/b=(ay-bx)/c (a,b,c khong bang 0). Chung minh rang x/a=y/b=z/c