Bạn xem lại đề. Nếu không có thêm điều kiện gì của $x,y,z$ (chả hạn nguyên, nguyên dương) thì không giải được đâu.
Bạn xem lại đề. Nếu không có thêm điều kiện gì của $x,y,z$ (chả hạn nguyên, nguyên dương) thì không giải được đâu.
Cho a,b,x,y,z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). Tìm x, y, z biết x+y+z=2010 và \(a^2-bc=0\)
Cho a,b,x,y,z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). Tìm x, y, z biết x+y+z=2010 và \(a^2-bc=0\)
cho 3 số x,y,z khác 0 thỏa mãn 1/x+1/y+1/z=0 gia tri bieu thuc K=(xy/z^2+yz/x^2+xz/y^2-2)^2017 là
x,y,z > 0 t/m xyz =1 . C/m 1/x+y+z + 1/3 ≥ 2/xy+yz+zx
Cho x,y,z là số đo ba cạnh của 1 tam giác, chứng minh: \(x^2y+y^2z+z^2x+zx^2+yz^2+xy^2-x^3-y^3-z^3>0\)
cho x,y,z>0 thoa x+xy+y=1,y+yz+z=3,z+xz+x=7 tinh A=x+y+z
Đề:
Cho \(x^3+y^3+z^3=3xyz\) và \(x+y+z\ne0\)
Tính \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Giải:
\(x^3+y^3+z^3=3xyz\)
\(x^3+y^3+z^3-3xyz=0\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(x^2+y^2+z^2-xy-xz-yz=0\left(x+y+z\ne0\right)\)
\(2\times\left(x^2+y^2+z^2-xy-xz-yz\right)=2\times0\)
\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2=0\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\left[\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
\(\left[\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
\(x=y=z\)
Thay \(y=x\) và \(z=x\) vào biểu thức, ta có:
\(\left(1+\frac{x}{x}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{x}{x}\right)\)
\(=\left(1+1\right)^3\)
\(=2^3\)
\(=8\)
ĐS: 8
Lan Anh <3
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Biết \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=0 . Khi đó giá trị biểu thức A = \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\) là :