Tìm GTLN của \(A=-7+x-x^2\)
1 cho biểu thức A=5x(xy^2-2xy)-5x^2y^2. Rút gọn A .b) Tính GT của A khi x=-1/2 ,y=2
2. Tìm GTLN của bt A = |x-7|-|x-9|.Q= |x-2|+|x-8| b) tìm GTLN của bt P= 9-2|x-3|
a, tìm GTLN A= x(5-3x)
b, cho x+y=7. tìm GTLN xy
c, tìm GTNN của F= x(x-3)(x-4)(x-7)
a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12
= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x
Dấu "=" xảy ra khi x = 5/6
Vậy MaxA = 25/12 <=> x = 5/6
b) Từ x + y = 7 => x = 7 - y
Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y
Dấu "=" xảy ra <=> y = 7/2 => x = 7/2
Vậy Max(xy) = 49/4 <=> x = y = 7/2
( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )
c) F = x( x - 3 )( x - 4 )( x - 7 )
= [ x( x - 7 ) ][ ( x - 3 )( x - 4 ) ]
= ( x2 - 7x )( x2 - 7x + 12 )
Đặt t = x2 - 7x
F = t( t + 12 ) = t2 + 12t = ( t2 + 12t + 36 ) - 36 = ( t + 6 )2 - 36
= ( x2 - 7x + 6 )2 - 36 ≥ -36 ∀ x
Dấu "=" xảy ra khi x2 - 7x + 6 = 0 <=> x = 1 hoặc x = 6
Vậy MinF = -36 <=> x = 1 hoặc x = 6
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
Tìm GTLN của mỗi đa thức sau : a , B(x) = -x^2 + 3x -7 . b, C(x) = -x ^ 2 + 7x - 20 . Q(x)= -x^2 - x + 7
a: \(B\left(x\right)=-\left(x^2-3x+7\right)\)
\(=-\left(x^2-3x+\dfrac{9}{4}+\dfrac{19}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}\)
Dấu '=' xảy ra khi x=3/2
b: Ta có: \(C\left(x\right)=-x^2+7x-20\)
\(=-\left(x^2-7x+20\right)\)
\(=-\left(x^2-7x+\dfrac{49}{4}+\dfrac{31}{4}\right)\)
\(=-\left(x-\dfrac{7}{2}\right)^2-\dfrac{31}{4}\le-\dfrac{31}{4}\)
Dấu '=' xảy ra khi x=7/2
Với \(-2\le x\le2\) tìm GTLN của biểu thức A = \(x^2-2x+7\)
`-2<=x<=2`
`<=>x+2>=0,x-2<=0`
`=>(x+2)(x-2)<=0`
`<=>x^2-4<=0`
`<=>x^2<=4`
`=>A<=4-2x+7=11-2x`
Vì `x>=-2=>2x>=-4`
`=>A<=11+4=15`
Dấu "=" xảy ra khi `x=-2
`-2<=x<=2`
`<=>x+2>=0,x-2<=0`
`=>(x+2)(x-2)<=0`
`<=>x^2-4<=0`
`<=>x^2<=4`
`=>A<=4-2x+7=11-2x`
Vì `x>=-2=>2x>=-4`
`=>A>=11+4=15`
Dấu "=" xảy ra khi `x=-2`
Tìm GTLN của biểu thức A = |x-7| - |x-2|
xét x<2:
=>A=-(x-7)+(x-2)=-x+7+x-2=7-2=5
xét 2<=x<7
=>-(x-7)-(x-2)=-x-x+7-2=-2x+5<=-2.2+5=1
xét x>=7:
=>x-7-(x-2)=x-7-x+2=-5
vậy Max A=5 khi x<2
1.Tìm GTLN của 7/ 5 +|x -1|
2.Tìm GTNN của A = 9/ 3 - |x - 5|
câu 1 sai đề
2. =9/3 vì căn x-5 lớn hơn hoặc bằng 0
Tìm GTLN, GTNN của:
A= |x-2|+x+ 5
B= |7-x |+|1-x|
a. A=|x-2|+x+5
Vì |x-2| ≥0
=>|x-2|+x+5≥x+5
Vậy GTNN của A=x+5 khi x-2=0
=> x=2
Vậy GTNN của A =2+5=7
Khi x=2
Hok tốt!!!!!
Tìm GTNN,GTLN của A= \(\frac{x^2}{x^2-5x+7}\)
Ta có
\(A\left(x^2-5x+7\right)=x^2\)
\(\Leftrightarrow x^2\left(A-1\right)-5Ax+7A=0\)
Để pt này có nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow25A^2-4.7.\left(A-1\right)\ge0\)
\(\Leftrightarrow3A^2-28A\le0\)
\(\Leftrightarrow0\le A\le\frac{28}{3}\)
Vậy A đạt GTNN là 0 khi x = 0, đạt GTLN là \(\frac{28}{3}\)khi x = \(\frac{14}{5}\)
TÌM GTLN GTNN (NẾU CÓ) CỦA:
a, A= |x-7|+6-x
b, B= x+1/2-|x-2/3|