Cho tam giác ABC có a=BC, b=AC, c=AB. Tính biểu thức CotA
Cho tam giác ABC có diện tích là S. BC = a, AC = b, AB = c. G là trọng tâm tam giác. Chứng minh rằng:
a/ \(cotA=\dfrac{b^2+c^2-a^2}{4S}\)
b/ \(cotA+cotB+cotC=\dfrac{a^2+b^2+c^2}{4S}\)
c/ \(GA^2+GB^2+GC^2=\dfrac{1}{3}\left(a^2+b^2+c^2\right)\)
d/ \(b^2-c^2=a\left(b.cosC-c.cosB\right)\)
a)Có \(b^2+c^2-a^2=cosA.2bc\)
\(S=\dfrac{1}{2}bc.sinA\)\(\Rightarrow4S=2bc.sinA\)
\(\Rightarrow\dfrac{b^2+c^2-a^2}{4S}=\dfrac{cosA.2bc}{2bc.sinA}=cotA\) (dpcm)
b) CM tương tự câu a \(\Rightarrow\dfrac{a^2+c^2-b^2}{4S}=\dfrac{cosB.2ac}{2ac.sinB}=cotB\); \(\dfrac{a^2+b^2-c^2}{4S}=\dfrac{cosC.2ab}{2ab.sinC}=cotC\)
Cộng vế với vế \(\Rightarrow cotA+cotB+cotC=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\)\(=\dfrac{a^2+b^2+c^2}{4S}\) (dpcm)
c) Gọi ma;mb;mc là độ dài các đường trung tuyến kẻ từ đỉnh A;B;C của tam giác ABC
Có \(GA^2+GB^2+GC^2=\dfrac{4}{9}\left(m_a^2+m_b^2+m_b^2\right)\)\(=\dfrac{4}{9}\left[\dfrac{2\left(b^2+c^2\right)-a^2}{4}+\dfrac{2\left(a^2+c^2\right)-b^2}{4}+\dfrac{2\left(b^2+c^2\right)-a^2}{4}\right]\)
\(=\dfrac{4}{9}.\dfrac{3\left(a^2+b^2+c^2\right)}{4}=\dfrac{a^2+b^2+c^2}{3}\) (đpcm)
d) Có \(a\left(b.cosC-c.cosB\right)=ab.cosC-ac.cosB\)
\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}\)
\(=b^2-c^2\) (dpcm)
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Bài 1: Cho tam giác ABC nhọn có BC= a, AC= b, AB= c. CMR: S ABC= 1/2 a.b.sinc
Bài 2: Cho tam giác ABC vuông tại A có AB= 8cm và đường cao AH= 4,8cm.
a) Tính tỉ các số lượng giác của góc B.
b) Tính chu vi tam giác AHC.
Bài 3: Cho tam giác ABC nhọn có diện tích bằng 4. CMR: AB ² + AC ² + BC ² = 16 (cotA + cotA + cotA)
Cho tam giác ABC có \(AB = c, Ac = b, BC = a\). Viết công thức tính cos A.
Áp dụng định lí cosin trong tam giác ABC ta có:
\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)
\(\begin{array}{l} \Leftrightarrow {a^2} = {c^2} + {b^2} - 2.c.b.\cos A\\ \Leftrightarrow 2bc\cos A = {b^2} + {c^2} - {a^2}\\ \Leftrightarrow \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\end{array}\)
Chú ý
Tương tự, ta suy ra công thức tính \(\cos B,\;\cos C\) như sau:
\(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\;\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)
Cho tam giác ABC có \(AB = c, AC = b, \widehat A = \alpha \). Viết công thức tính BC theo \(b,c,\alpha \)
Áp dụng định lí cosin trong tam giác ABC ta có:
\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)
\(\begin{array}{l} \Leftrightarrow B{C^2} = {c^2} + {b^2} - 2.c.b.\cos \alpha \\ \Leftrightarrow BC = \sqrt {{c^2} + {b^2} - 2bc.\cos \alpha } \end{array}\)
cho tam giác ABC nhọn. cmr cotA+cotB+cotC=AB^2+AC^2+BC^2/4S
cho tam giác ABC vuông tại A có AB=6cm,BC=20cm;đường cao AH.Gọi E,F là hình chiếu của a lần lượt lên AB,AC a) tính EF b) chứng minh rằng AE.AB=AE.AC c) tính biểu thức A lớn bằng sin2C +Sin2 C -tan B +tan B
câu 4 tam giác ABC và tam giác DEF có AB=AD,BC=EF thêm điều kiện nào để tam giác ABC=Tam giac DEF
A) góc A=góc D B)góc C= góc F C)AB=AC D)AC=DF
câu 1giá trị của biểu thức 5x - 1 tại x = 0 là
a) -1. b )1 . c) 4 d) 6
Cho tam giác ABC có BC = a, AC = b; AB = c. Tính P = A B → + A C → . B C → .
A. P = b 2 − c 2 .
B. P = c 2 + b 2 2 .
C. P = c 2 + b 2 + a 2 3 .
D. P = c 2 + b 2 − a 2 2 .
Ta có P = A B → + A C → . B C → = A B → + A C → . B A → + A C → .
= A C → + A B → . A C → − A B → = A C → 2 − A B → 2 = A C 2 − A B 2 = b 2 − c 2 .
Chọn A.