Số hạng không chứa x trong khai triển (3x+1/x^4) 15.
1) khai triển (3x+2)^4 2)xét khai triển (x^2+2x)^10 a) tìm số hạng đứng chính giữa b) chứa x^15
a)Tìm số hạng không chứa x trong khai triển (x+2/x)10
b)Tìm số hạng không chứa x trong khai triển (x+2/x2)6
c)Tìm hệ số của số hạng chứa x10 trong khai triển (3x3-2/x2)5
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810
Số hạng không chứa x trong khai triển 2 x - 3 x x > 0 là:
A. -5832
B. 1728
C. -1728
D. 489888
Tìm số hạng không chứa x trong khai triển 3 x - 1 3 x 2 9
A. 2268
B. -2268
C. 84
D. -27
Cho khai triển (2x-1)^6.(3x^2+1)^5 . Tìm số hạng chứa x^4 trong khai triển .
\(\left(2x-1\right)^6\left(3x^2+1\right)^5=\sum\limits^6_{k=0}C_6^k\left(2x\right)^k\left(-1\right)^{6-k}\sum\limits^5_{i=0}C_5^i\left(3x^2\right)^i\)
\(=\sum\limits^6_{k=0}\sum\limits^5_{i=0}C_6^k.C_5^i.\left(-1\right)^{6-k}.2^k.3^i.x^{k+2i}\)
Số hạng chứa \(x^4\) thỏa mãn:
\(\left\{{}\begin{matrix}0\le k\le6\\0\le i\le5\\k+2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(1;2\right);\left(2;0\right)\)
Hệ số:
\(C_6^4.C_5^0\left(-1\right)^4.2^4.3^0+C_6^2C_5^1\left(-1\right)^2.2^2.3^1+C_6^0.C_5^2.\left(-1\right)^0.2^0.3^2=...\)
15. Số hạng chính giữa trong khai triển (3x + 2y)^4 là?
18. Tìm hệ số của x^7 trong khai triển : h(x)= x(2 + 3x)^9 là?
19. Tìm hệ số của x^7 trong khai triển g(x)= (1+x)^7 + (1-x)^8 + (2+x)^9 là?
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
Lời giải:
Theo khai triển Newton thì:
\((3x^2+x+1)^{10}=\sum \limits_{k=0}^{10}C^k_{10}(3x^2)^{10-k}(x+1)^k=\sum\limits_{k=0}^{10}[C^k_{10}(3x^2)^{10-k}\sum \limits_{p=0}^kC^p_kx^p]\)
Để tìm hệ số của $x^4$ ta cần tìm $p,k$ sao cho:
$0\leq p\leq k\leq 10$ và $2(10-k)+p=4$
Dễ dàng tìm được $(k,p)=(8,0), (9,2), (10,4)$
Do đó, hệ số của $x^4$ là"
$3^2.C^8_{10}.C^{0}_8+3C^9_{10}.C^2_9+C^{10}_{10}.C^4_{10}=1695$
Cho \(n\in N^{sao}\) thỏa \(C_n^1+C_n^2=15.\) Tìm số hạng không chứa \(x\) trong khai triển \(\left(x+\dfrac{2}{x^4}\right)^n\)
\(C^1_n+C^2_n=15\) (Điều kiện: \(n\ge2\))
\(\Leftrightarrow n+\dfrac{n!}{2!\left(n-2\right)!}=15\)
\(\Leftrightarrow n+\dfrac{n\left(n-1\right)\left(n-2\right)!}{2\left(n-2\right)!}=15\)
\(\Leftrightarrow n+\dfrac{n\left(n-1\right)}{2}=15\)
\(\Leftrightarrow2n+n\left(n-1\right)=30\)
\(\Leftrightarrow2n+n^2-n=30\)
\(\Leftrightarrow n^2+n-30=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=5\\n=-6\left(\text{loại}\right)\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{2}{x^4}\right)^5=C^k_5x^{5-k}\left(\dfrac{2}{x^4}\right)^k=C^k_5x^{5-k-4k}.2^k=C^k_5x^{5-5k}.2^k\)
\(ycbt\Leftrightarrow5-5k=0\Leftrightarrow k=1\)
\(\Rightarrow C^1_5.2^1=10\)
Vậy số hạng không chứa \(x\) trong khai triển là \(10\).
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)