Tìm các phân thức nghịch đảo của các phân thức sau
a 2x trên 5x-5
b x^2-2x trên 3x+2
Phân tích các phân thức sau thành tổng các phân thức mà mẫu thức là các nhị thức bậc nhât:
a) (2x-1)/(x^2-5x+6)
b) (x^2+2x+6)/(x-1)(x-2)(x-4)
c) (3x^2+3x+12)/(x-1)(x+2)x
a) = \(\frac{2x}{\left(x-2\right)\left(x-3\right)}\)-\(\frac{1}{\left(x-2\right)\left(x-3\right)}\)
các bài sau tt
Tìm các số nguyên x để các phân thức sau nhận giá trị nguyên:
a. 5x+11 (tử số) / 2x+3 (mẫu số)
b. 5x-4 (tử số) / 3x-1 (mẫu số)
c. 5x/3x+2
d. 7x+7/4x+3
e. 2x^2-x+2/x^2-x+2
a: ĐKXĐ: x<>-3/2
Để \(\frac{5x+11}{2x+3}\) là số nguyên thì \(5x+11\vdots2x+3\)
=>\(10x+22\vdots2x+3\)
=>\(10x+15+7\vdots2x+3\)
=>7⋮2x+3
=>2x+3∈{1;-1;7;-7}
=>2x∈{-2;-4;4;-10}
=>x∈{-1;-2;2;-5}
b: ĐKXĐ: x<>1/3
Để \(\frac{5x-4}{3x-1}\) là số nguyên thì 5x-4⋮3x-1
=>15x-12⋮3x-1
=>15x-5-7⋮3x-1
=>-7⋮3x-1
=>3x-1∈{1;-1;7;-7}
=>3x∈{2;0;8;-6}
=>x∈\(\left\lbrace\frac23;0;\frac83;-2\right\rbrace\)
mà x nguyên
nên x∈{0;-2}
c: ĐKXĐ: x<>-2/3
Để \(\frac{5x}{3x+2}\) là số nguyên thì 5x⋮3x+2
=>15x⋮3x+2
=>15x+10-10⋮3x+2
=>-10⋮3x+2
=>3x+2∈{1;-1;2;-2;5;-5;10;-10}
=>3x∈{-1;-3;0;-4;3;-7;8;-12}
=>x∈{-1/3;-1;0;-4/3;1;-7/3;8/3;-4}
mà x nguyên
nên x∈{-1;0;1;-4}
d:
ĐKXĐ: x<>-3/4
Để \(\frac{7x+7}{4x+3}\) là số nguyên thì 7x+7⋮4x+3
=>28x+28⋮4x+3
=>28x+21+7⋮4x+3
=>7⋮4x+3
=>4x+3∈{1;-1;7;-7}
=>4x∈{-2;-4;4;-10}
=>x∈\(\left\lbrace-\frac12;-1;1;-\frac52\right\rbrace\)
mà x nguyên
nên x∈{-1;1}
e: ĐKXĐ: x∈R
Để \(\frac{2x^2-x+2}{x^2-x+2}\) là số nguyên thì \(2x^2-x+2\vdots x^2-x+2\)
=>\(2x^2-2x+4+x-2\vdots x^2-x+2\)
=>\(x-2\vdots x^2-x+2\)
=>\(\left(x-2\right)\left(x+1\right)\vdots x^2-x+2\)
=>\(x^2-x-2\vdots x^2-x+2\)
=>\(x^2-x+2-4\vdots x^2-x+2\)
=>\(-4\vdots x^2-x+2\)
mà \(x^2-x+2=\left(x-\frac12\right)^2+\frac74\ge\frac74\forall x\)
nên \(x^2-x+2\in\left\lbrace2;4\right\rbrace\)
TH1: \(x^2-x+2=2\)
=>\(x^2-x=0\)
=>x(x-1)=0
=>\(\left[\begin{array}{l}x=0\\ x=1\end{array}\right.\)
Thay lại vào phân số, ta thấy x=0 thỏa mãn
TH2: \(x^2-x+2=4\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[\begin{array}{l}x=2\\ x=-1\end{array}\right.\)
Thay lại vào phân số, ta thấy x=2 thỏa mãn
Vậy: x∈{0;2}
Tìm các số nguyên x để các phân thức sau nhận giá trị nguyên:
a. 5x+11 (tử số) / 2x+3 (mẫu số)
b. 5x-4 (tử số) / 3x-1 (mẫu số)
c. 5x/3x+2
d. 7x+7/4x+3
e. 2x^2-x+2/x^2-x+2
Không biết mẫu số và x như thế nào? Bạn xem lại
Bài 1: chứng minh rằng: x^2 - 2x +2 >0 với mọi x
Bài 2 : tìm số a để đa thức x^3 - 3x^2 +5x +a chia hết cho x-2
Bài 3: Tính nhanh các gt của biểu thức sau:
a) 53^2 + 47^2 +94.53
b) 50^2 - 49^2 + 48^2 - 47^2 + 2^2 - 1^2
c) 57^2 + 26.87 + 13^2
Bài 4: phân tích các đa thức sau thành nhân tử:
a) x^2 -5x+4
b) x^2 - y^2 +2x +1
c) x^2 - y^2 - 5x +5y
d) 5x^3 - 5x^2y - 10x + 10xy
e) 2x^2 - 5x +7
Bài 5: phân tích các đa thức sau thành nhân tử
a) x^3 - 3x^2 +1 -3x
b) 3x^2 -6xy + 3y^2 -12z^2
c) x^2 - 3x +2
Bài 6: Rút gọn các biểu thức sau
a) (2x+1)^2 + 2(4x^2-a) + ( 2x-1)^2
b) (x^2 - 1)(x+2) - (x-2)(x^2 +2x +4)
giúp mình giải hết với ạ.mk cảm ơn nhiều
Bài 1:
Ta có: \(x^2-2x+2=x^2-2x+1+1\)
\(=\left(x^2-2x+1\right)+1\)
\(=\left(x-1\right)^2+1\)
Ta thấy rằng: \(\left(x-1\right)^2\ge0\) ( Với mọi \(x\in Z\) )
mà 1 > 0
=> \(\left(x-1\right)^2+1\ge0\)
<=> \(x^2-2x+1\ge0\)
Bài 3:
a) 53^2 + 47^2 + 94.53
= 53^2 + 47^2 + 2.47.53
= ( 53 + 47 )^2
= 100^2
= 10000
b) 50^2 - 49^2 + 48^2 - 47^2 + 2^2 - 1^2
= ( 50^2 - 49^2 ) + ( 48^2 - 47^2 ) + ( 2^2 - 1^2 )
= (50+49).(50-49) + (48+47).(48-47) + (2+1).(2-1)
= 50 + 49 + 48 + 47 + 2 + 1
= (49 + 1) + (48 + 2) + 50 + 47
= 50 + 50 + 50 + 47
= 197
Bài 1: chứng minh rằng: x^2 - 2x +2 >0 với mọi x
Bài 2 : tìm số a để đa thức x^3 - 3x^2 +5x +a chia hết cho x-2
Bài 3: Tính nhanh các gt của biểu thức sau:
a) 53^2 + 47^2 +94.53
b) 50^2 - 49^2 + 48^2 - 47^2 + 2^2 - 1^2
c) 57^2 + 26.87 + 13^2
Bài 4: phân tích các đa thức sau thành nhân tử:
a) x^2 -5x+4
b) x^2 - y^2 +2x +1
c) x^2 - y^2 - 5x +5y
d) 5x^3 - 5x^2y - 10x + 10xy
e) 2x^2 - 5x +7
Bài 5: phân tích các đa thức sau thành nhân tử
a) x^3 - 3x^2 +1 -3x
b) 3x^2 -6xy + 3y^2 -12z^2
c) x^2 - 3x +2
Bài 6: Rút gọn các biểu thức sau
a) (2x+1)^2 + 2(4x^2-a) + ( 2x-1)^2
b) (x^2 - 1)(x+2) - (x-2)(x^2 +2x +4)
giúp mình giải hết với ạ.mk cảm ơn nhiều
Bài 1 :
x2-2x+2>0 với mọi x
=x2-2.x.1/4+1/16+31/16
=(x-1/4)2 + 31/16
Vì (x-1/4)2 \(\ge\) 0 nên (x-1/4)2 + 31/16 \(\ge\) 0 với mọi x (đfcm)
Tìm phân thức nghịch đảo của các phân thức sau: x + 1 x - 2 , 2 x 1 , x - 1
Hướng dẫn:
+ Phân thức nghịch đảo của phân thức (x + 1)/(x - 2) là (x - 2)/(x + 1).
+ Phân thức nghịch đảo của phân thức (2x)/1 là 1/(2x).
+ Phân thức nghịch đảo của phân thức x - 1 là 1/(x - 1).
phân thức nghịch đảo của phân thức x^2 -6/x+1 là:
A. 6-x^2/x+1
B. x-1/x^2-6
C.x+1/x^2-6
D. x^2 +9/x=1
Phép chia đa thức 2x^4 -3x^3 +3x-2 cho đa thức x^2-1 được đa thức dư là:
A.2
B.1
C.0
D.10
Với Giá trị nào của x thì phân thức 3x+2/3x-2 xác định ?
A. x không bằng -2/3 B. x=2/3 C. x không bằng +- 2/3 D. x không bằng 2/3
(64-^3):(x^2 +4x +16) ta được kết quả là :
A. x+4 B. x -4 C. -(x+4) D.4-x
Tìm các giá trị nguyên của x để giá trị của các phân thức sau có giá trị nguyên:
A=2x^3+x^2+2x+4/2x+1
B=3x^2-8x+1/x-3
C=x^3+2x+5x+10/x^2+4x+4
Bài 4. Cho hai đa thức: P(x) = (4x + 1 - x ^ 2 + 2x ^ 3) - (x ^ 4 + 3x - x ^ 3 - 2x ^ 2 - 5) Q(x) = 3x ^ 4 + 2x ^ 5 - 3x - 5x ^ 4 - x ^ 5 + x + 2x ^ 5 - 1 a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm, dần của biển. b) Tính P(x) + 20(x) 3P(x) + 0(x)
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
a)
\(P \left(\right. x \left.\right) =\)\(3 x^{2} + 7 + 2 x^{4} - 3 x^{2} - 4 - 5 x + 2 x^{3}\)
\(= \left(\right. 3 x^{2} - 3 x^{2} \left.\right) + 2 x^{4} + 2 x^{3} - 5 x + \left(\right. 7 - 4 \left.\right)\)
\(= 2 x^{4} + 2 x^{3} - 5 x + 3\)
\(Q \left(\right. x \left.\right) =\)\(3 x^{3} + 2 x^{2} - x^{4} + x + x^{3} + 4 x - 2 + 5 x^{4}\)
\(= \left(\right. 5 x^{4} - x^{4} \left.\right) + \left(\right. 3 x^{3} + x^{3} \left.\right) + 2 x^{2} + \left(\right. x + 4 x \left.\right) - 2\)
\(= 4 x^{4} + 4 x^{3} + 2 x^{2} + 5 x - 2\)
\(b \left.\right)\)
\(P \left(\right. - 1 \left.\right) = \&\text{nbsp}; 2 * \left(\right. - 1 \left.\right)^{4} + 2 * \left(\right. - 1 \left.\right)^{3} - 5 * \left(\right. - 1 \left.\right) \&\text{nbsp}; + 3\)
\(= 2 * 1 + 2 * \left(\right. - 1 \left.\right) + 5 + 3\)
\(= 2 - 2 + 5 + 3\)
\(= 8\)
___
\(Q \left(\right. 0 \left.\right) = 4 * 0^{4} + 4 * 0^{3} + 2 * 0^{2} + 5 * 0 \&\text{nbsp}; - 2\)
\(= 4 * 0 + 4 * 0 + 2 * 0 + 5 * 0 - 2\)
\(= - 2\)