Tìm x đểv 9-(x+1).(3x+3)=6
Chứng minh rằng :
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\)
Các bạn giúp mình nhé ! : Bạn Vũ Minh Tuấn , Nguyễn Văn Đạt , Hoàng Minh Nguyệt , Băng Băng 2k6 , và thầy Akai Haruma vào giúp mình với !!!
\(B=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\\ \Leftrightarrow B=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\\ \Leftrightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\\ \Leftrightarrow B=1-\frac{1}{100}< 1\left(tmđk\right)\)
Trần Quốc Tuấn hi mk tag giùm nhé :
Vũ Minh Tuấn , Nguyễn Văn Đạt , Hoàng Minh Nguyệt , Băng Băng 2k6 và Akai Haruma
Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
Chứng minh rằng : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!
Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{\left(12x-12x\right)-\left(8y-8y\right)+\left(6z-6z\right)}{29}=0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{12x-8y}{16}=0\Rightarrow12x-8y=0\Rightarrow12x=8y\\\frac{6z-12x}{9}=0\Rightarrow6z-12x=0\Rightarrow6z=12x\\\frac{8y-6z}{4}=0\Rightarrow8y-6z=0\Rightarrow8y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{z}{4}\end{matrix}\right.\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right).\)
Chúc bạn học tốt!
Cho : \(\frac{x+y}{x-1}=\frac{z+x}{z-x}\) . Chứng minh rằng : \(x^2=yz\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma và tất cả các bạn khác vào giúp mình ạ !!!
Cho biết : \(x+y+z=2020\)
và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{202}\)
Tính M =\(\frac{x+y}{z}=\frac{x+z}{y}=\frac{y+z}{x}\)
Giúp mình nhé các bạn : Bạn Vũ Minh Tuấn , Băng Băng 2k6 , Nguyễn Việt Lâm và thầy Akai Haruma
Đừng làm tắt nhé
Cho biết : \(x+y+z=2020\)
và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{202}\)
Tính M = \(\frac{x+y}{z}=\frac{x+z}{y}=\frac{y+z}{x}\)
Giúp mình nhé các bạn : Bạn Vũ Minh Tuấn , Băng Băng 2k6 , Nguyễn Việt Lâm và thầy Akai Haruma
Cho biết : \(x+y+z=2020\)
và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{202}\)
Tính M = \(\frac{x+y}{z}=\frac{x+z}{y}=\frac{y+z}{x}\)
Giúp mình nhé các bạn : Bạn Vũ Minh Tuấn , Băng Băng 2k6 , Nguyễn Việt Lâm và thầy Akai Haruma
\(M=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}\\ M=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-\frac{z}{z}-\frac{y}{y}-\frac{x}{x}\\ M=\left(x+y+z\right).\left(\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)-1-1-1\\ M=2020.\frac{1}{202}-3\\ M=10-3\\ M=7\)
Sửa lại đề là tính \(M=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}\) nhé.
Ta có:
\(M=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}.\)
\(\Rightarrow M=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-\frac{z}{z}-\frac{y}{y}-\frac{x}{x}\)
\(\Rightarrow M=\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)-1-1-1\)
Mà \(x+y+z=2020;\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{202}.\)
\(\Rightarrow M=2020.\frac{1}{202}-3\)
\(\Rightarrow M=10-3\)
\(\Rightarrow M=7\)
Vậy \(M=7.\)
Chúc bạn học tốt!
Các bạn ơi cô mình giảng hình như thế này :
Ta có : x+y+z =2020
x + y = 2020 -y
x+z =2020 - y
y+z =2020 -z
Ta có :
\(\frac{2020-z}{z}\) = ...
Như thế đó maong các bạn giải như thế
Cho biết : \(x+y+z=2020\)
và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{202}\)
Tính M =\\(\frac{x+y}{z}=\frac{x+z}{y}=\frac{y+z}{x}\)
Giúp mình nhé các bạn : Bạn Vũ Minh Tuấn , Băng Băng 2k6 , Nguyễn Việt Lâm và thầy Akai Haruma
Cho biết : \(x+y+z=2020\)
và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{202}\)
Tính M = \(\frac{x+y}{z}=\frac{x+z}{y}=\frac{y+z}{x}\)
Giúp mình nhé các bạn : Bạn Vũ Minh Tuấn , Băng Băng 2k6 , Nguyễn Việt Lâm và thầy Akai Haruma
Bn ko nên đăng 1 câu hỏi nhiều lần nếu còn vậy thì t sẽ xóa câu hỏi của bn
Cho : \(\frac{x+y}{x-y}=\frac{z+x}{z-x}\) . Chứng minh rằng : \(x^2=yz\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma và tất cả các bạn khác vào giúp mình ạ !!!