Cho a,b,c > 0 và a+b+c=1
Tìm max \(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)
cho số thực không âm thỏa mãn a+b+c=1
tìm Min và Max của \(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\)
1. Tìm max
\(M=\dfrac{yz\sqrt{x-1}+zx\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
2. Cho a,b,c >0 và a+b+c=\(\sqrt{2}\)
Tìm max \(N=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)
\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)
\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)
\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)
Cho a,b,c >0 và a=max{a,b,c} .Tìm gtnn của :
\(S=\dfrac{a}{b}+2\sqrt{1+\dfrac{b}{c}}+3\sqrt[3]{1+\dfrac{c}{a}}\)
Cho a,b,c>0 và a=max{a,b,c}.Tìm min của :
\(S=\dfrac{a}{b}+2\sqrt{1+\dfrac{b}{c}}+3\sqrt[3]{1+\dfrac{c}{a}}\)
CHo a,b,c >0 và a+b+c=3
Tim Max \(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Áp dụng BĐT Bunhiacopxki :
\(P^2=\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)
\(\Leftrightarrow P^2\le6\left(a+b+c\right)\Leftrightarrow P^2\le18\Leftrightarrow P\le\sqrt{18}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a+b+c=3\\\sqrt{a+b}=\sqrt{b+c}=\sqrt{c+a}\end{cases}}\) \(\Leftrightarrow a=b=c=1\)
Vậy ................................................
+) Tìm min
\(E=\dfrac{1+\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{xy+yz+zx}\)
+) Tìm max và min
\(F=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\)
Trong đó a,b,c>0 và \(min\left\{a,b,c\right\}\ge\dfrac{1}{4}max\left\{a,b,c\right\}\)
Cho a,b,c>0 và a+b+c=1 Tìm min A = \(\frac{a^2}{\sqrt{a+b}}+\frac{b^2}{\sqrt{b+c}}+\frac{c^2}{\sqrt{c+a}}\) Tìm max B = \(\frac{a^2}{\sqrt[3]{3b+c}}+\frac{b^2}{\sqrt[3]{3c+a}}+\frac{c^2}{\sqrt[3]{3a+b}}\)
Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)
mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac
\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)
cho a,b,c>0 và a+b+c=3
Tìm Max A=\(\sqrt{2a+b+1}+\sqrt{2b+c+1}+\sqrt{2c+a+1}\)
Có \(\sqrt{2a+b+1}\le\frac{2a+b+1+4}{4}\)
Tương tự \(\sqrt{2b+c+1}\le\frac{2b+c+1+4}{4},\sqrt{2c+a+1}\le\frac{2c+a+1+4}{4}\)
\(\Rightarrow A\le\frac{2a+b+1+2c+a+1+2b+c+1+4+4+4}{4}=6\)
dấu = xảy ra khi a=b=c và a+b+c=3=>a=b=c=1
a) cho a,b,c không âm ; a+b+c=1 . tìm Max S
biết \(S=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{a+c}\)
b)a,b,c,d không âm ; a+b+c+d=1,tìm Max S
Biết \(S=\sqrt[3]{2a+b}+\sqrt[3]{2b+c}+\sqrt[3]{2c+d}+\sqrt[3]{2d+a}\)