Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Người Vô Danh
Xem chi tiết
Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 20:49

\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)

\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)

\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 20:52

\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)

Mai Thị Thúy
Xem chi tiết
Mai Thị Thanh
Xem chi tiết
Mai Thị Thanh
21 tháng 8 2021 lúc 20:51

mong mn giúp mk vs 

QUan
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 12 2016 lúc 20:54


Áp dụng BĐT Bunhiacopxki : 

\(P^2=\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)

\(\Leftrightarrow P^2\le6\left(a+b+c\right)\Leftrightarrow P^2\le18\Leftrightarrow P\le\sqrt{18}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}a+b+c=3\\\sqrt{a+b}=\sqrt{b+c}=\sqrt{c+a}\end{cases}}\) \(\Leftrightarrow a=b=c=1\)

Vậy ................................................

Hi Mn
Xem chi tiết
An Vy
Xem chi tiết
quang phan duy
9 tháng 7 2019 lúc 8:23

Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)

mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac

\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)

Không Quan Tâm
Xem chi tiết
Tuấn
8 tháng 8 2016 lúc 22:03

Có \(\sqrt{2a+b+1}\le\frac{2a+b+1+4}{4}\)
Tương tự \(\sqrt{2b+c+1}\le\frac{2b+c+1+4}{4},\sqrt{2c+a+1}\le\frac{2c+a+1+4}{4}\)
\(\Rightarrow A\le\frac{2a+b+1+2c+a+1+2b+c+1+4+4+4}{4}=6\)
dấu = xảy ra khi a=b=c và a+b+c=3=>a=b=c=1

Diệu Hoàng Minh
Xem chi tiết