Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Ngọc Uyển Nhi
Xem chi tiết
Nghiêm Đức Thành
Xem chi tiết
Nhật Hạ
25 tháng 2 2020 lúc 19:00

Ta có: \(\left|2x+3y\right|\ge0\)\(\forall x,y\inℝ\)\(\left|4y+5z\right|\ge0\)\(\forall y,z\inℝ\)\(\left|xy+yz+zx+110\right|\ge0\)\(\forall x,y,z\inℝ\)

Nên: \(P=\left|2x+3y\right|+\left|4y+5z\right|+\left|xy+yz+xz+110\right|\ge0\)\(\forall x,y,z\inℝ\)

Dấu " = " xảy ra <=> \(\left|2x+3y\right|+\left|4y+5z\right|+\left|xy+yz+xz+110\right|=0\)

Có: \( \left|2x+3y\right|=0\)\(\Leftrightarrow2x+3y=0\)\(\Leftrightarrow2x=-3y\)\(\Leftrightarrow\frac{x}{-3}=\frac{y}{2}\)

\(\left|4y+5z\right|=0\)\(\Leftrightarrow4y+5z=0\)\(\Leftrightarrow4y=-5z\)\(\Leftrightarrow\frac{y}{-5}=\frac{z}{4}\)

\(\left|xy+yz+zx+110\right|=0\)\(\Leftrightarrow xy+yz+zx+110=0\)\(\Leftrightarrow xy+yz+zx=-110\)

Lại có: \(\frac{x}{-3}=\frac{y}{2}\)\(\Rightarrow\frac{x}{15}=\frac{y}{-10}\) (1) ;  \(\frac{y}{-5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{-10}=\frac{z}{8}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{-10}=\frac{z}{8}=k\)=> x = 15k ; y = (-10) . k ; z = 8k

Ta có: \(xy+yz+zx=-110\)\(\Rightarrow15k\left(-10\right)k+8k\left(-10\right)k+8k.15k=-110\)

\(\Rightarrow k^2\left(-150\right)+k^2\left(-80\right)+120k^2=-110\)

\(\Rightarrow k^2\left(-110\right)=-110\)\(\Rightarrow k^2=1\)\(\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

+) Th1: k = 1   

Có: x = 15k = 15 . 1 = 15

y = (-10) . k = (-10) . 1 = -10

z = 8k = 8 . 1 = 8

+) Th2: k = -1

Có: x = 15k = 15 . (-1) = -15 

y = (-10) . k = (-10) . (-1) = 10

z = 8k = 8 . (-1) = -8

Vậy GTNN P = 0 <=> (x; y; z) = (15; -10; 8) hoặc (x; y; z) = (-15; 10; -8)

Khách vãng lai đã xóa
Ngô Tuấn Anh
Xem chi tiết
Khiết Băng
Xem chi tiết
Tien Nguyen
Xem chi tiết
Phan Nguyễn Hoàng Vinh
22 tháng 12 2018 lúc 16:01

k bít

Thuhuyen Le
Xem chi tiết
Thắng Nguyễn
30 tháng 3 2017 lúc 17:27

Sửa thành tìm GTLN nhé !

Với x,y,z>0 chia 2 vế của \(xy+yz+xz=xyz\) cho \(xyz\) ta có :

\(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\frac{1}{4x+3y+z}\le\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)\). Tương tự cho 2 BĐT kia:

\(\frac{1}{x+4y+3z}\le\frac{1}{64}\left(\frac{1}{x}+\frac{4}{y}+\frac{3}{z}\right);\frac{1}{3x+y+4z}\le\frac{1}{64}\left(\frac{3}{x}+\frac{1}{y}+\frac{4}{z}\right)\)

Cộng theo vế 3 BĐT trên ta có: 

\(M\leΣ\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)=Σ\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}\)

Đẳng thức xảy ra khi \(x=y=z=3\)

Nguyễn Bùi Đại Hiệp
Xem chi tiết
Ong Seong Woo
Xem chi tiết
Online Math
Xem chi tiết