Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc hân
Xem chi tiết
Thanh Nga Nguyễn
Xem chi tiết
Thanh Nga Nguyễn
4 tháng 9 2019 lúc 12:40

các bn vẽ hình hộ t nha

Thanh Nga Nguyễn
Xem chi tiết
Nguyễn Tất Đạt
3 tháng 9 2019 lúc 22:48

Ta có \(\overrightarrow{IB}=\overrightarrow{BA}\Rightarrow\hept{\begin{cases}I\in AB\\\overrightarrow{AI}=2\overrightarrow{AB}\end{cases}}\). Tương tự \(\hept{\begin{cases}J\in\left[AC\right]\\\overrightarrow{AJ}=\frac{AJ}{AC}\overrightarrow{AC}=\frac{2}{5}\overrightarrow{AC}\end{cases}}\)

Do đó \(\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\frac{2}{5}\overrightarrow{AC}-2\overrightarrow{AB}\)(đpcm).

Thanh Nga Nguyễn
4 tháng 9 2019 lúc 12:35

giải giúp t câu này nha : tính vecto IG theo vecto AB và vecto AC  (các b vẽ hình ra hộ t nhé)

LE VINH TAM
21 tháng 10 2023 lúc 5:17

cho tam giác ABC có trọng tâm G và N là điểm thỏa mãn vectơ AN = vectơ GC. Hãy xác định vị trí điểm N.

Phạm Pin
Xem chi tiết
Thao Nguyen
Xem chi tiết
Cố Tử Thần
25 tháng 9 2019 lúc 19:47

MA+MC= MA-MB

<=> 2 MI=BA

=> MI=BA/2

=> I thuộc đường tròn I bán kính AB/2

Cố Tử Thần
25 tháng 9 2019 lúc 19:48

nãy mk quên giải thik: 

a, gọi I la trung điểm của AC=> MA+MC=2MI

hok tốt

Cố Tử Thần
25 tháng 9 2019 lúc 19:50

b, 2MA+MB=4MB-MC

gọi I: 2OA+IB=0

gọi J: 4JB-JC=0

có: 

3MI=3MJ

MI=MJ

=> M thuộc đường trung trục của IJ

Khang Lý
Xem chi tiết
Nam Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2021 lúc 21:39

a: \(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)

Nguyễn Hương Linh
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 9 2021 lúc 19:52

\(\overrightarrow{ME}+3\overrightarrow{MC}=\overrightarrow{0}\Rightarrow\overrightarrow{MC}=-\dfrac{1}{3}\overrightarrow{ME}\)

\(EB=2EA\Rightarrow\overrightarrow{BE}=2\overrightarrow{EA}\)

Ta có: \(\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{BE}=\overrightarrow{MB}+2\overrightarrow{EA}=\overrightarrow{MB}+2\left(\overrightarrow{EM}+\overrightarrow{MA}\right)=\overrightarrow{MB}-2\overrightarrow{ME}+2\overrightarrow{MA}\)

\(\Rightarrow3\overrightarrow{ME}=\overrightarrow{MB}+2\overrightarrow{MA}\Rightarrow\overrightarrow{ME}=\dfrac{1}{3}\overrightarrow{MB}+\dfrac{2}{3}\overrightarrow{MA}\)

\(\Rightarrow\overrightarrow{MC}=-\dfrac{1}{3}\overrightarrow{ME}=-\dfrac{1}{9}\overrightarrow{MB}-\dfrac{2}{9}\overrightarrow{MA}\)

\(\Rightarrow\dfrac{2}{9}\overrightarrow{MA}=-\dfrac{1}{9}\overrightarrow{MB}-\overrightarrow{MC}\Rightarrow\overrightarrow{MA}=-\dfrac{1}{2}\overrightarrow{MB}-\dfrac{9}{2}\overrightarrow{MC}\)

Nguyễn Việt Lâm
13 tháng 9 2021 lúc 19:52

undefined

DmahdhjshbBdgh
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 14:54

Gọi M là trung điểm BC, theo tính chất trọng tâm:

\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

Mà I là trung điểm AG \(\Rightarrow\overrightarrow{IG}=\dfrac{1}{2}\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AM}\Rightarrow\overrightarrow{GI}=-\dfrac{1}{3}\overrightarrow{AM}\)

Lại có: M là trung điểm BC \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)

Nên ta có:

\(\overrightarrow{AB}+\overrightarrow{AC}+6\overrightarrow{GI}=\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{AM}+\overrightarrow{MC}+6.\left(-\dfrac{1}{3}\right)\overrightarrow{AM}\)

\(=2\overrightarrow{AM}-2\overrightarrow{AM}=\overrightarrow{0}\) (đpcm)