Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm của BC, AC, AB. D là trung điểm của AM. Chứng minh rằng:
a, vecto AB+ vecto AC+ vecto MN+ vecto MP = vecto 0
b, vecto NB+ vecto NC - 2.vecto AN= 4.vecto ND
cho tam giác ABC. Các điểm M và N thỏa mãn : vecto MN= 2 vecto MA- vecto MB+ vecto MC
a) tìm điểm I sao cho 2 vecto IA - vecto IB + vecto IC = vecto 0
b) CM : đường thẳng MN luôn đi qua một điểm cố định
c) Gọi P là trung điểm BN . CM đường thẳng MP luôn đi qua một điểm cố định
Cho tam giác ABC, gọi D là điểm trên cạnh BC sao cho vecto BD=2/3 vecto BC và I là trung điểm của AD. Gọi M là điểm thỏa mãn vecto AM=2/5 vecto AC. Chứng minh B,I,M thẳng hàng
Cho tam giác ABC, gọi D là điểm trên cạnh BC sao cho vecto BD=2/3 vecto BC và I là trung điểm của AD. Gọi M là điểm thỏa mãn vecto AM=2/5 vecto AC. Chứng minh B,I,M thẳng hàng
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC .
a)CM: vecto IJ=2/5 vecto AC - 2 vecto AB
b) tính vecto IG theo vecto AB và vecto AC
Cho tứ giác ABCD, I và J là trung điểm của AB và CD,O là trung điểm I. M là điểm bất kỳ.Chứng minh: a) vecto OA + vecto OB + vecto OC + vecto OD = vecto O b) vecto MA + vecto MB + vecto MC + vecto MD = 4MO c) vecto AC + vecto BD = vecto 2IJ
Cho tam giác ABC. Gọi A’,B’, C’ lần lượt là trung điểm của BC, CA, AB. a) Chứng minh vecto AA’+ vecto BB’+ vecto CC’ = vecto 0 b) Đặt vecto BB’ = vecto u, CC’ = v. Tính vecto BC, CA, AB theo vecto u và v