X2 -2(m+1)x +3m -5=0
Định m để phương trình có nghiệm thỏa mán hệ thức đã chỉ ra :
a) x2 +2mx-3m-2=0; 2x1-3x2=1
b)x2-4mx+4m2-m=0; x1=3x2
C)mx2+2mx+m-4=0; 2x1+x2+1=0
d)x2-(3m-1)x+2m3=0; x1=x22
e)x2+92m-8)x+8m3=0 x1=x22
f)x2-4x+m2+3m=0 x12+x2=6
a) Ta có: \(\text{Δ}=\left(2m\right)^2-4\cdot1\cdot\left(-3m-2\right)=4m^2+12m+8=4m^2+12m+9-1=\left(2m+3\right)^2-1\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow\left(2m+3\right)^2>1\)
\(\Leftrightarrow\left[{}\begin{matrix}2m+3>1\\2m+3< -1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m>-2\\2m< -4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1\cdot x_2=-3m-2\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\2x_1-3x_2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=-4m\\2x_1-3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x_2=-4m-1\\x_1+x_2=-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-4m-1}{5}\\x_1=-2m+\dfrac{4m+1}{5}=\dfrac{-6m+1}{5}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=-3m-2\)
\(\Leftrightarrow\dfrac{-4m-1}{5}\cdot\dfrac{-6m+1}{5}=-3m-2\)
\(\Leftrightarrow\left(-4m-1\right)\left(-6m+1\right)=25\left(-3m-2\right)\)
\(\Leftrightarrow24m^2-4m+6m-1=-75m+50\)
\(\Leftrightarrow24m^2+2m-1+75m-50=0\)
\(\Leftrightarrow24m^2+77m-51=0\)
Đến đây bạn tự làm nhé
Phương trình x2-(3m+1)x+m-5=0 có một nghiệm x=-1,khi đó giá trị của m bằng
A.1 B.\(\dfrac{-5}{2}\) C.\(\dfrac{5}{2}\) D.\(\dfrac{3}{4}\)
Thay \(x=-1\) vào ta được:
\(\left(-1\right)^2-\left(3m+1\right)\left(-1\right)+m-5=0\)
\(\Leftrightarrow4m-3=0\Rightarrow m=\dfrac{3}{4}\)
Cho phương trình:
a,mx2+2(m-4)x+m+7=0
Tìm m để x1-2x2=0
b, x2+(m-1)x+5m-6=0
Tìm m để 4x1+3x2=1
c,3x2-(3m-2)x-(3m+1)=0
TÌm m để 3x1-5x2=6
a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)
(*) \(m\ne0\) Phương trình có nghiệm
\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\)
Hệ thức Viet kết hợp 4x1 + 3x2 = 1
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)
\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)
\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)
\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1
Tìm m để phương trình ( 3 m + 1 ) x 2 – ( 5 – m ) x − 9 = 0 có nghiệm là x = −3
A. m = − 3 8
B. m = 3 8
C. m = 5 8
D. m = − 5 8
Thay x = −3 vào phương trình (3m + 1)x2 – (5 – m)x − 9 = 0
ta được (3m + 1).(−3)2 – (5 – m).(−3) − 9 = 0
⇔ 24m + 15 = 0 ⇔ m = − 5 8
Vậy m = − 5 8 là giá trị cần tìm.
Đáp án cần chọn là: D
Bài 1
Cho Phương trình \(x^2-\left(m+5\right)x+3m+6=0\) Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5.
Bài 2
Cho phương trình x2-2(m-3)x+2(m-1)=0, Tìm m để phuowngt rình có 2 nghiệm phân biệt sao cho biểu thức T=x12 + x22 đạt giá trị nhỏ nhất.
Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5 nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)
Tìm m để PT có 2 nghiệm x1,x2 thỏa mãn
a,\(x^2-2x-m^2-2m=0\left(x1< 2< x2\right)\)
b, \(2x^2+\left(m-6\right)x-m^2-3m=0\left(1< x1< x2\right)\)
c, \(mx^2+\left(2m^2-m-1\right)x-2m+1=0\left(x1< x2< 5\right)\)
Cho pt: 3x2-2(m-1)x+3m-5=0. Tìm m để pt có 2 nghiệm thỏa mãn: x1<x2<1
Tìm m để phương trình x^2-(3m-1)x+2m^2-m=0 có nghiệm x1, x2 thỏa mãn x1=x2^2
\(PT\Leftrightarrow\left(x-2m+1\right)\left(x-m\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2m-1\\x=m\end{matrix}\right.\).
+) TH1: \(\left\{{}\begin{matrix}x_1=2m-1\\x_2=m\end{matrix}\right.\Rightarrow m^2=2m-1\Leftrightarrow m=1\).
+) TH2: \(\left\{{}\begin{matrix}x_1=m\\x_2=2m-1\end{matrix}\right.\Rightarrow\left(2m-1\right)^2=m\Leftrightarrow\left(m-1\right)\left(4m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{4}\end{matrix}\right.\).
Vậy...
cho pt: x^2-2(m-3)x+3m^2-8m+5=0.Tìm m để pt có hai nghiệm x1,x2 thỏa mãn x1^2+2x^2-3x1x2=x1-x2
giúp mik làm mấy bài này nha ,mik cảm ơn nhiều lắm.
1.tìm m để phương trình x^2-2(m-1)x+m^2-3m=0 có hai nghiệm x1,x2 thoả x1+x2.
2.tìm m để phương trình x^2+(m^2-3m)x+m^3=0 có hai nghiệm x1,x2 thoả x1=x2^2.