cho A= 3x^2+5/x^2+1
a) tìm x nguyên để A nguyên
b) tìm GTNN của A
Cho biểu thức: A=\(\dfrac{\sqrt{3}-3}{\sqrt{x}+1}\)
a. Tìm x nguyên để A nhận giá trị nguyên
b. Tìm GTNN của A
a: Để A nguyên thì \(\sqrt{x}-3⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)
hay \(x\in\left\{0;1;9\right\}\)
a) Tìm các giá trị nguyên của \(x\) để biểu thức M=\(\dfrac{8x+1}{4x-1}\)nhận giá trị nguyên
b) Tìm giá trị nguyên của biến \(x\) để biểu thức \(A=\dfrac{5}{4-x}\)có giá trị lớn nhất
c) Tìm giá trị nguyên của biến \(x\) để biểu thức \(B=\dfrac{8-x}{x-3}\)có giá trị nhỏ nhất
(Hơi khó mọi người giúp mình với ạ)
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
a) Để M nhận giá trị nguyên thì \(8x+1⋮4x-1\)
\(\Leftrightarrow8x-2+3⋮4x-1\)
mà \(8x-2⋮4x-1\)
nên \(3⋮4x-1\)
\(\Leftrightarrow4x-1\inƯ\left(3\right)\)
\(\Leftrightarrow4x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow4x\in\left\{2;0;4;-2\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{1}{2};0;1;-\dfrac{1}{2}\right\}\)
mà x là số nguyên
nên \(x\in\left\{0;1\right\}\)
Vậy: \(x\in\left\{0;1\right\}\)
1, cho A= căn 3x-5/x-1
a, tìm đk của x để A có nghĩa
b,Tìm x để A=3
#giúp mk vs ạ
a, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3x-5}{x-1}\ge0\\x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-5\ge0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-5\le0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{3}\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x< 1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{3}\\x< 1\end{matrix}\right.\)
Vậy ...
b, Ta có : \(A=\sqrt{\dfrac{3x-5}{x-1}}=3\)
\(\Leftrightarrow3x-5=9x-9\)
\(\Leftrightarrow x=\dfrac{2}{3}\left(TM\right)\)
Vậy ...
Cho S=3/10+3/11+...+3/14
Cm:1<S<2
2,Cho A=6x-5/3x+1
a Tìm x là số nguyên để A nhận giá trị nguyên
b Tim x là số nguyên để A có GTNN
2)\(A=\frac{6x-5}{3x+1}=\frac{6x+2-7}{3x+1}=\frac{2\left(3x+1\right)-7}{3x+1}=2-\frac{7}{3x+1}\)
Do đó, để A nhận giá trị nguyên thì 7 chia hết cho 3x+1 hay (3x+1)EƯ(7)={1;-1;7;-7}
=>3xE{0;-2;6;-8}
=>xE{0;2}
*)Nếu x=0 thì A=2-\(\frac{7}{3\cdot0+1}=2-7=-5\)
*)Nếu x=2 thì A=2-\(\frac{7}{3\cdot2+1}=2-1=1\)
=>Để A có GTNN thì x=0
Vậy để A nhận giá trị nguyên thì xE{0;2}
Để A có GTNN là -5 thì x=0
Cho P=\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
a) Tìm x để P nguyên
b) Tìm min của P
Cứu mình với mn ơi !!!!!!!!!!!
a: \(P\in Z\)
=>căn x+2-2 chia hết cho căn x+2
=>căn x+2 thuộc Ư(-2)
=>căn x+2=2
=>x=0
b: \(P=\dfrac{\sqrt{x}+2-2}{\sqrt{x}+2}=1-\dfrac{2}{\sqrt{x}+2}\)
căn x+2>=2
=>2/căn x+2<=1
=>-2/căn x+2>=-1
=>P>=0
Dấu = xảy ra khi x=0
cho biểu thức √x√x−1+3√x−1−6√x−4x−1−1xx−1+3x−1−6x−4x−1−1
a, rút gon A
b,Tìm x để A = -2
c,Tìm x nguyên để A cũng là số nguyên
Cho phân số : A=5-x/x-2
a) tìm x để A nguyên
b) tìm x để A có GTNN
a) Tìm số tự nhiên x sao cho: 2x+2x+3=72
b)Tìm x nguyên để số hữu tỉ \(\dfrac{x-2}{x+1}\) có giá trị nguyên
c) Tìm GTNN của biểu thức: P=|2x+7|+\(\dfrac{2}{5}\)
a) 2ˣ + 2ˣ⁺³ = 72
2ˣ.(1 + 2³) = 72
2ˣ.9 = 72
2ˣ = 72 : 9
2ˣ = 8
2ˣ = 2³
x = 3
b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)
Ta có:
x - 2 = x + 1 - 3
Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ x ∈ {-4; -2; 0; 2}
Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên
c) P = |2x + 7| + 2/5
Ta có:
|2x + 7| ≥ 0 với mọi x ∈ R
|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R
Vậy GTNN của P là 2/5 khi x = -7/2
Cho hai biểu thức: A= \(\dfrac{1}{x-1}+\dfrac{-4}{x+1}+\dfrac{8x}{x^2-1}\) với x ≠ ±1
a) Chứng minh rằng A= \(\dfrac{5}{x-1}\)
b) Tính giá trị của A tại x thỏa mãn điều kiện |x-2|=3
c) Tìm giá trị nguyên của x để A có giá trị là một số nguyên.
a) A = \(\dfrac{1}{x-1}-\dfrac{4}{x+1}+\dfrac{8x}{\left(x-1\right)\left(x+1\right)}\)
= \(\dfrac{x+1-4x+4+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{5}{x-1}\) => đpcm
b) \(\left|x-2\right|=3=>\left[{}\begin{matrix}x-2=3< =>x=5\left(C\right)\\x-2=-3< =>x=-1\left(L\right)\end{matrix}\right.\)
Thay x = 5 vào A, ta có:
A = \(\dfrac{5}{5-1}=\dfrac{5}{4}\)
c) Để A nguyên <=> \(5⋮x-1\)
x-1 | -5 | -1 | 1 | 5 |
x | -4(C) | 0(C) | 2(C) | 6(C) |